
a Weekly journal of practical information, art, science, mechanics, chemistry, and manuractures.

THE NEW CROTON DAK.

For some years it has been apparent that an increased reservoir capaeity for the water supply of the crity of New York was soon to be a necesesity. To proeity of New Yorkker Bridgo daun was proposed some vide this the Quaker Bnis. years ago. This gigantio structure eeemed alimost in
advance of the needs of the case, and the engineer of advance of the needss of tho cass, and the engineer of
the aqueduct commisasion, M. A. Fteley, proposed as a the aqueduct commission, M. A. Fteley, proposed as a
subatitute a high dam as elose to the preeent Croton dam as poesible, and immediately below It. Eventually a compromise site was ehoeen-what is known as the Cornell site-about half way between the present Croton dam and Quaker Bridge. Contractorn' estimates for the construetion of the dam will soon be before the authoritiek and full plans have been prepared illostrating the details of its formation.

The dam is a combined masonry and earthwork layer watered and rolled with grooved rollens In a structure. As shown in our cut, the portion on the sample section the elevation of the crest above the extreme right is of earthwork. A section of this part original ground level is given at 120 feet. The excavashows an earthwork embankment rising 120 feet above tion for the base of the dam is carried dove 12 z feet the original ground level. Its apex is 30 feet wide, below this point. This excavation, starting with a providing a 90 foot roadway. The slope of the sides is width of about 980 feet at the ground leval, by slopes width of about 280 feet at the ground level, by slopes center of the dam. From this trench a core rises This is to be built of rubble masonry, 18 feet thick at the base and rising to a height 4 feet above the water level. The core is battered to a width of crest of 6 feet. It rests upon the bed rock.
The masonry section which adjoins this portion corresponds with it in level of crest. An 18 foot roedway runs across it, The dam is of rabble masonry, going in some cases 80 feet below the surface. Along the

bottom of ite excavation two trenchem, 10 feet wide and 3 feet deep, are carried, into which the masonry descends, thus giving the great structure a definite resistance to horlvontal thrusk. The breadth of the masonry in some parts of the bave is 185 feet. It is faced with out stone. Its inner face slopes a little; the outer face, while varying in degree, has a general slope of 2 verlieal to $11 / 3$ horizontal
The dam proper ie to be 1,900 feet long. Next to it comes the spillway, 1,000 feet long, over which the overflow takee plnce. This portion in built in a series of steps, and its level of orest determines the height of water in the dam. This crest is 94 feet below that of he dam proper, thus giving a margin of safety beyond any catastrophe.
In general conatruetion the apillway is a masonry den faced on the inner side with eut stone. The outer wall sloping outward is broken into a series of stepe about 4 feet width and 5 feet rise. It in based upon the bed roek in exsetly the manner described for the dam propor. It curves around as shown, and presents quite s striking appearance. Ite peculiar shape enables a bridge to be carried over the gap to give pasege to the highway.
The dam along ite outer edge has a cornice of arches, an iden of whoee appearance may be derived from the eut.
The work to be done by the dam is the formation of a farger reservoir than the preeent and the impound-
ifg of a quantity of the water which now at many fimes goes to waste, pouring over the crest of the present Croton dam. It will inerease the storage capacity of the Croton Lake in round nambers from $2,000 \mathrm{mil}$ lions to $\$ 0,000$ millions of gallons. The main intake into the new aqueduct will be at the new gate house near the old dam. With the old aqueduct a conneetion will be made almost on a line with the new dam. Whether the section of old aqueduet intercepted will be preserved of not is atill an open question. It may be used to deliver water hack to the new gate house and thence into the new aqueduct.
The present Croton dam, and far back of it, Muscoot dsm, will be rubmerged. The letter dam will cut off all water above it from the reservoir. Such water it is intended to use only in emergencies. The object of Muscoot dam is to preserve a uniform level of water as dente of the region which surrounds its reserveir Below the Muscoot dam $\Omega, 000$ millions of gallons is the capacity of the new reservoir
The watershed of the region feeding the new dam in 5863 square miles. The eetimated coet of the dar proper, as per engineer's report of October 8, 1800, in railroads, ete., $81,075,000$, and for Mnecoot dam $\$ 900,000$, Six and ene, The dam, estimated to cost 200 oen its construction. Bridge dam, has only 4,000 gallons less storage. It extreme height above the river bed is 150 feet, its extreme depth below the same is 80 feet, giving a total of 209 feet maximum height.

Eativation.

A rarep and even more curious phenomenon than hibernation, or winter sleep, is the eativation, or torpidity during the dry meason, of certain animals. A one thammals which is most sensitive to heat Ma drynees M. I. Cuonot mentions the tanree, of Madagacar, an inweot ealling eature revobing the hedgehog. It is very active during the rainy season, months in the dry period. The most remarkable sum mer sleepers, however, are found in the group of dip soida, intermediate between the batrachians and hahes, and compriaing at present but three animaisthe Lepidosiron paradoas of the affiuente of th Amazon, the Protopterus annectens of Gambia an Shegal, and the Ceratodus Forsteri of Australia. Their anatomical atructure resembles that of the finhes, and a uronchial apparatus allows them to breathe in the water, while a ptumonary apparatus enables them abmorb the oxygen of the air. A careful study of the protopterus ehows that during the entire dry in the dried-up mad at a depth of five feet, and is surrounded by a sort of cosoon, which incloses it hermetcally. Air penetratee through a narrow channel to the animal, which in this state breathes, not only through a ling into which the swinning biadder On the return through its wide membraneous tail eovering the animal dieolves, and the creatare straightene out from ite doubled-up position, and wims in the water for three months.-Mediterranean Naturaliat.

Tme tide tables for the Atlantic coost of the United States, toyether with 106 stations on the Atlantic coast Britith Americs, for the year 1808, published by the isne, and copios ena be obtained at the agenelos of the Burvey in thls elly, or by addressing the office at Wahingtos. Price twenty-Ave cents.

ESTABLISHED 1846.

MUNN \& CO., Editors and Proprietors. publibhed werkly at
No. 361 BHOADWAY, NEW YORK.
O. D. MUNN.

패ハํㄴ․․

 MUNK \& CO_{4}, \%ill Bromiwa, corner of Mranklin Street, New York.
4

Mailding Edition.

MUNN \& CO., Publithemens.

EV Realiersare spocilly reguated to notify the
NEW YORK, SATURDAY, JULY 9,1802

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
\qquad

No. 862.

the micaragua canal.
The assertion is sometimes made that the Niearague Canal will not beneffit as in regard to the increase of the number of our ships, and this assertion is based on the faet that France failed to add a single ship to her sarrying fleet by the completion of the Suez Canal built by French engineering, French enterprise and French capital. This fact is brought forward as a les son in history which we must bear in mind when we are asked to consider the Nicaragua Canal question as in element in the development of our commerce.
At the present day the Sues Canal is chiefly devoted to the carrying trade of England, and England owns fighting interest in the stock.
We hold in regard to the Nicaragua Canal that the United States will, no matter who builds it, take the same position that England could not fail to attain in the use of the Suez Canal. England possesses an immense, flourishing and steadily inereasing commeree in the Fast, while the commercial possessions of France here are comparatively small.
Like England in the Rast, we have extensive pos-保 in the West on our Pacifle shore, California, Oregon, Washington and Alaska, all very flourishing, while their productiveness in steadily increasing. It must, withont fail, stimulate our shipbuilding trade when by a shorter and safer transit the mutual comnerce will receive a most powerful impulse. All the Juropean ocean-faring nations are even more interested in the Nicaragua Canal than in the Sues Canal, because by passing it they will avoid the stormy ocean of the extreme southerly coast of South America, the sailing round which is a great deal worse than sailing around the Cape of Good Hope.
There ought to be no doubt that our government will assist the enterprise. It is in duty bound to do so, Even in the view of national defense we must have a shorter waterway for more rapid and safer navigation between our extensive eastera Atlantic and western Pacifle shore, and so dispense with the delay and danger of a long, roundabout way of sailing around the whole South American continent over the two grand oceans of our globe.

OF INTEREST TO ELSCTRICIANE

atmospherie te
 By years of exposure to atmospherie temperature,

 hardened steel loses hardness.Steel magnets lose their permanent magnetism at the boiling point of almond oil.
Steel not only loses its magnetism, but becomes on-magnetic when heated to an orange color.
Silvanus Thompson says that the sudden slamming of the armature of a permanent magnet is liable to deteriorate the magnetism; and that the sudden detaching of the armature is of advantage to the magnet.
In the storage battery the plates intended for the positive are pasted with red lead and dilute sulphuric acid (acid 1 part, water 9), and those to be used for negatives with litharge and dilute sulphurie acid.
The positive plates of a storage battery when fully charged should look like wet slate, nearly black; when partly charged they are dark red, chocolate or plum color. The negative plates are aiways much lighter than the positives and have a pale slate color.
Too quick a discharge buckles the plates and a very sudden discharge draws the paste out of them. When fulled charged plates which have been removed from the electrolyte are to be replaced, the liquid put in should have the same specifle gravity as it was before According to Silvanus Thompson, a simple tangent ter when constructed as follows: "T Take apere me insulated copper wire of a gange not less than No 10 B. W. G. or say than three millimeters in dinmeter and of this wire wind five turns only, so as to heve mean radiue for New York Cleveland and Chieage of 372 inches for Thiladelphin 8.07 inches, Wathingtom 0.18 inches; Gnan Wion 1.42 inches; then sueh a
 ampere dellects the needle exactly 45 , that is, to the angie whose angent tangent 1 , and the natura peres direetly. The mins has to be inverely pion portional to the intensity of the horizontal of the earth's magnetio of the horizental component ampere meter is to be used. It may be further note that a current of one ampere strength will eane deposition in one hour of 1.174 gramme anse grains of copper in an electrolytic cell. It will in on hour deposit 4034 grammes or $60 \% 52$ grains of silver in a silver cell.

This exposition is deriving quite a revemue from the visitors whose curiosity prompts them to see the ing completion: An admiasion of twenty-five cents is charged, and on single days the number of visitors has exceeded 14,000 . With eooler and more plenaant weather, it is believed, the vilitors will be mueh more amerons. Without exception all are enthusiastie in their aduairation and wonder at the magnificent spee-

Stevent institate.

We recently presented a series of engravings illus trating some of the apesial departmente of this important inetitution of learning. The following abstract from the remarks by Mr. S. B. Dod, Prenident of the Board of Trusteos, at the commencement of the Stevens Institute of Technology, June 28, 1802, contains an epitome of the use, progress, and prospects of the establishment :
The question with us is, not how to get stadents to come, but how to take care of those who crowd at our doors for adminsion.
It was easy to provide for the first class which grad nated in 1878, for it was composed of only one man; it is harder to meet the requirements of the 190 men who will seek entrance to Stevens next fall. But the trustees are planning to do this, and, with the help of our friends, they will do it. They propose to raise the roof of the extension on the north and add two stories to it, and so take care of the class that will come to us pext fall. The alumni have generously cotory, and, when the balance of $\$ 23,000$ is subscribed, the trustees will go on with that building; and so we shall be able to take care of future classes.
What we have done in the past assures us of the future. We have graduated nineteen classes of men who are able to take their places in the world with such eredit to themselves and their alma mater that I have been repeatedly assured by men in management of large and important industrial works that they need no higher commendation of a man than the diploma from Stevens
And now this twentieth class comes to us for their degrees, a solid phalanx of high standing, a class of thirty-nine, without a single condition.
We want our friends to know that we are ready and anxious, if the means are placed in our hands, to give to all who ask it this thorough education.
And I have the pleasure of announcing that, at the recent meeting of the trustees, President Morton presented to the institute the sum of $\$ 20,000$ for the further endowment of the chair of engineering practice.
This is not the first of President Morton's gifts to the institute. He gave $\$ 10,500$ toward fitting up the workshop: 8,500 for the department of applied electricity; $\$ 10,000$ for the endownent of the chair of engineering practice, and now this $\$ 80,000$ to the same chair.
The sum total of these gifts amounts to nearly $\$ 50,000$, and perchance exceeds that sum if we reekon the many smaller but constant gifts, not set down in
the books, with which he tided over this or that minor the books, with which he tided over this or that minor deflciency in the various departments.
But generous as he has been in his gifts of money, he has given far more than these-he has given his brains, his heart, himself, to Stevens, with untiring devotion.
This is oftentimes more value than all else-of a value, indeed, that cannot be measured by the lower standard of dollars and cents.
What Stevens is to-day, she owes to Heary Morton. The course of education which is to be for you, young men, a priceless blessing through your life, you owe to
him.
fitting to sacrifice to heroes until after sunset, my exfitting to sacrifice to heroes until after sunset, my ex-
cuse is this: that, in the literal sense, it is after sunset; cuse is this: that, in the literal sense, it is after sunset;
but in the metaphorical sense, I do not want to see the day when it shall be sunset for our honored president.
I know that I volee the sentiment of every loyal son of Stevens when I say: "Long live Stevens !" and long live Henry Morton, her first and foremost president!

The Peary Relief Expedition.
As was contemplated last year, when Lieutenant Peary set out on his Greenland exploring expedition ers, or with the design further supplies for the explor ers, or with the design of bringing them home if their Work was completed, sailed from New York June 27. The relief party includes Professor Angelo Heilprin and Henry G. Bryant, of the Philadelphia Academy of Natural Sciences; V. W. Stokes, artist; Dr. Jnckson M. Milla, surgeon; Albert W. Vorse, William E. Meehan, botanist; C. E. Hite, taxidermist, and Samuel J. Entriken. The party, with all manner of stores usefal for Aretic travel, left by steamer for St. Johns, Newoundland, expecting to sail from there for Greenland on July δ, making the voyage on the Kite, a small and last year.
The first stop will be made at Godhaven, Disco Island, from there the vessel proceeding to Melville Whale and thence to Ingleneld Guin, at the head of Peary intended to start out upon his overland explorations, It was Lient. Peary's intention, it will be renembered, to winter comfortably in well established quarters in this neighborhood, starting northward in

Inland ice to Humboldt Glacier, thence to the head of Peterman Fjord, to Sherard Osborn Fjord, to De Long define the coast line of northern Greenland, supply depots being left on the route for assistance on the return journey.
The exploration was undertaken upon the assumption that the interior of Greenland is covered with an uninterrupted ice cap, which the explorer thought might be thus traversed in one season, the party returning to Whale Sound in time to be taken up and brought home by a vessel reaching there by July or
August of this year, although the possibility of a August of this year, although the possibility of a
further stay of the explorers over another year was further stay of the explorers over another year was the scientists of the relief party intend to examine the Humboldt Glacier, and hope to fall in with Lieut, Peary and his party early in August. The return cannot be delayed much beyond this date, in any event, the relief party not expecting to be away later than the last week in September. If Lieut. Peary and his party are not brought back, fresh supplies will be left for their maintenance in their northern exile another winter, should this be unavoidable.

The old and New scientibe spirit.
A writer in Industries of June \&, under the initials W. M. M.," writes as follows :
"About 200 years ago a young man, whose name is still held of some account, was engaged in the work of verifying by calculation a theory of his own respecting the curve of the moon's motion in ite orbit, There was a discrepancy of 14 or 15 per cent between the observed and calculated results, and consequently he laid aside at that time any further consideration of
the matter. Recently the members of the Physthe matter. Recently the members of the Physman, whose name is now held of some account, give a statement of the evidence for and against the theory that the earth carries the ether with it in its motion round the sun. The lecture was illustrated with many diagrams of experimenta, mostly negative or inconclusive in their results. Inter alia there was a diagram of observed and calculated results, showing a discrepancy of about 99 per cent. But science has advanced since Newton's time, and the last thing any modern scientific man would think of doing is to 'lay
aside all further thought of this matter' on account of aside all further thought of this matter' on account of
a trifling discrepancy of this sort. There is a good deal to be said for this modern view, Newton was right after all, and a too scrupulous delicacy might have caused him to miss his greatest discovery and the kudos attached to it. Adams first calculated the position of Neptune, but Le Verrier published first; and o, even if he has oes not mean to be caught napping lation. Does not Mayer share with Joule in the opinon of half the world the credit of the theory of the conservation of energy, and who would have heard of that it is little short of to veriny 'We are even toid is in us, ' no matter how feeble and flickering it may be is in haply some one greater should waste his atreng collecting and arranging the uncompleted work, as Maxwell did for Cavendish. And yet-and yet-the Principia will endure forall time : will 'Modern Views of Electricity,' with its choice of inconsistent hypothe ses, or 'Electro-magnetic Theory,' with its rational (\%) system of units, its uncouth phraseology, and its petuant contempt for whatever is not brand new, stand such a test \& $\mathbf{\Delta}$ bigot for classical education, with an insufficient appreciation of Newton's genius, attributen his superiority in part to the fact that he published in Latin. 'You may think any scientifie nonsense you please,' says this misguided person, 'and you may
write it down readily enough in English ; but you can't put it into Latin, nor, easily, into French. If it 2 coes readily into German, it is probably more scientific coes readily into Gon it But that of eonrse, and ars inse lays it is often almost as mood a deed to kill a false hypothesis as to establish a true one; and for this purpose the publication of negative results is most useful, nor is it contrary to precedent, Kepler gave his failures to the world, but only after he had arrived at the truth; Faraday gives his negative results, but he draws the logical inference from them. In each case we could ill spare the insight obtained into the mind and method of a genius. A reasonable rule might be laid down that only those who suceeed are entitled to show where they have failed; but then how meager would be the reports of our scientific societies !"

Desert Mirage in the Class Hoem.

Some days since, I noticed a remarkably striking xample of true desert mirage on a smoothly paved dewalk, on which the hot afternoon sun was shining. The walk was perfectly level, paved with smooth white abs of artificial stone, extending in a horizontal direc on along the top of a steep hill. On coming up the the sidewalk, by standing just below the brow of the
hill. A curious phenomenon presented Itself. The walk appeared to be flooded with water, on the smooth surface of which could be seen the reflected images of lamp posts, pedestrians, ete. A small poodle dog trotting along above his inverted image presented an
amusing spectacle. So perfect was the illusion that amusing spectacle. So perfect was the illusion that, for a moment, 1 could hardly believe that the walk was not wet. I have since noticed the phenomenon every day, and find that whenever the cye can be brought nearly on the plane of a mooth, level surface of stone paving of asphalt, on which the sun shines brightly, these refracted images can be seen.
It occurred to me that possibly the effect could be produced in the class room. A preliminary experiment with a hot kitchen stove convinced me that the plan was feasible, and I found that if a strip of thick sheet iron, five or six feet long, four or five inches wide, supported so as to be perfectly level, be heated by a nummirage can be sean by bringing the cye on a level with one end of the strip, and viewing a candle flame that burns on a level with the other end. The candle burns an a lat candle is viflele is visible above the edge. If the cold iron shows a reflection due to its polished surface, it may be sprinkled
with fine sand. Obviously the surface of the sand must with fine sand. Obviously the surface of the sand must
be made level. The effect can be heightened, if the apparatus works well, by using a small pain tree an inch or so high out from paper and colored to life, which is more realistic and suggestive of the desert, The cause of the phenomenon is, of course, apparent to any one versed in the laws of optics. The rays of light, on striking the layer of warm (and consequently lens dense) air, are refracted upward without striking the ground at all. This gives the appearance of a reflected image, and the natural inference would be that it was due to water. On the desert the layer is hot enough and thick enough to bend up the rays sufficiently to onable a person standing upon level ground to see them, but under the less favorable conditions offered by the city sidewalk, the refraction is so slight that the eye has to be lowered considerably to observe the effect.
San Francisco, June, 1892.
Rellef from the Minsinsippi Floods
W. J. Smith, civil engineer, of Toronto, Canada, has proposed a novel way of diverting the flood waters of some of the great affluents of the Mississippi. His plan is to cut a channel from the Red River near Shreveport to the nearest available point on the Sabine River, a distance of about 25 miles, with a water area of 1,000 feet, with an estimated Slow of $7,200,000$ cuble feet per hour. Estimated cost, $\$ 3,000,000$. A further relief by a channel 125 miles long from the Arkansas to the Red River, near the boundary line of the Indian Territory, and 300 miles further on through the eastern border of Kansas, to tap the Missouri River near Kansas City. On the eastern side of the Mísissippi the seheme is to connect the Tennessee with the Gulf through the Tombigbee River and the Yazoo through the Pearl River, and thus divert $20,000,000$ cubic feet of floor water per hour from the Lower Mississippi, at an estimated cost of about $\$ 85,000,000$.
The scheme is a grand one, with the exception that it does not deal with the topography of the country through which the great waterways are to flow nor the relative elevation of the rivers to be connected. There are large areas of elevated land between the Missou-i and Arkansas, with a mountain divide, and a
ridge of hills between the Arkansas and Red Rivers. ridge of hills between the Arkansas and Red Rivers.
The divide between the Red River and the upper waters of the Sabine indicates deep and costly cutting with the uncertainty of the required flow through 100 miles of the Sabine River. The connecting waterway on the east side of the Mississippi are of the same vague character as to the topographical difficulties.
The New York Building at the World'e Wuip.
The board of managers for the State of New York has decided upon the plans and ordered work to be immediately commenced upon the New York building at the Columbian Exposition. The accepted design was made Messrs. McKim, Meade \& White, and is in the style of the Italian Renaissance, three stories, with porticoes at each end, to be surmounted by two campaniles. The building will be 60 feet higb, 200 feet long and 105 feet deep. The material ased in the conang and will be staff, a composition of plaster of Paris, struction will be staff, a composition of plaster of Paris,
cement and hair, which gives the general effect of cement
marble.

In the U. S. Senate an appropriation bill for the Fair has been favorably reported, and its passage and approval by the President is virtually assured. It is practically the same as that agreed upon by the Honse of Representitives, and makes an aggregate appropriation of $\$ 5,541,495$, including an iesue of $10,000,000$ silver half dollar souvenir pieces, and appropriations for the procurement of medals and diplomas, expenses of the government exhibit, additional employer, ete, The committee included in the bill an amendment requirlag the Exposition to be eloved on 太undaye.

AN TMPROVED BLAXOR ILDE FALVE A allde valve of dimple and durable construetion shown herowith, the illuatration being made from a drawing of a vaive Atted oa a locomotivo rumning on the imperial government railways of Japan, a sixwheeled coupled tender engine, wheels 4 feet diameter, eylinders 16 by 28 inchese and boiler presure 100
pounde per square inch. The improvement has been pounde per suarse inch. The improvement has been
patented by Mf . John MeDonaid, of the Railway patented by lif. John MeDoneid, of the Railway
Shenbasi, Tokia, Japan. The valvo is formed with an Shenbast, Tolkia, Japan. The valve is formed with an open top in which olidee vertically a erown plate or
eover adapted to be premed by back presure of the cover adapted to be premed by back pressare of the
eylinder in contact with the face plate held on the eylinder in contact with the face plate held on the

Kidonald balaserd blide valve.

steam chest cover. In the middle of the cover is a valv which opens into the steam chest over the space cover ed by the crown plate, the valve opening to the atmosphere when the live steam is shut off from the steam chesk, whereby all vacuum in the cylinder is destroyed In starting, there is ordinarily a momentary puff of oteam, untll the crown plate rises, and the operator can abserve whether the valve is working balanced or unbalanced, according to the emcape or non-escape of teain, a lever or link enabling the operator to close the openings of the valve as desired, when the imarovement works like an ordinary slide valve. Fig. represents tho packing strip held by a curved spring n the end and side wails of the crown plate, and Fig. is a spring prefersbly used, but not considered essendiai, to keep the crown plate against the upper face plate. It is said that one locomotive in Japan, profiled with one of these valves, has run over 38,000 miles, showing no wear whatever, the trialn thus far being so successful that other locomotives are being fitted with the improvement. An eopecially valuable feature of the device is that it automatically opens the ylinders to the atmowphere when the engine is running without steam, so that there is no vacuum created and o tendency to suck smoke and ashes into the cylindars.

4 Now Une for Rambee A new application of the stems of the larger growing species of bamboo has recently been adoptd in China for the manufacture of small trays and ornamental articies for export to Europe. It is known in China as bamboo sheeting, and it is sald to be carried on at present only to a limited exteat at Wenchow, where, notwithstanding that it is quite a new trade, about ten firms are sow engraged in it. The prosese adopted is as follows: A length of batoboo is cut off, and then pared with an ax till it is of the thieknens required. It is next planed with a spokesheve, and the thin cylinder so obtained is slit up, so that, on being opened out, it forms a sheet. A number of shese eylinders, placed one insile the other, are immersed in boiling water for a few min intes, to render them flexible, and they are then unrolled and and they are then unroiled and flattened out, by being subjected to pressare under heavy stones. These sheets are wometimes usa lor making fretwork and earved sereens, fans, ete; and the small, pale, straw colored pin trays, for toilet tables, which appeared in the London shops last season, are apparently made from this apecially prepared bamboo. It seems to adapt fteelf extremely well for moulding into many forms, and might be made avallable in this country for varions
kinds of vencering. The bamboo now appears to be the Dendrocalamus lat(florus.

For a number of yearn Dr. J. B. James, of London, Fas treated hemorrhoids by the simple process of ap plying calomel to them with the finger, and claims to have done so with marked sucesss in every case, parieularly when the hemorrhoidal mass was inflamed, whieh is characterized by mucous discharge and hemorrhage, accompanied with a painful sensation of weight in the region of the rectum. All these sympoms, it is alleged, were speedily relieved by the simple application of the ealomel, which had the still more important subsequent advantage of rentoring the patient to perfect ease, enabling him to pursue his usual oceupations in happy immunity from all distressing or annoying symptoms.

A GCRAPER FOR BAWMILL CARRIAOES.

A cheap and simple devien to be attached to the carriage of any kind of a sawmill, to sorape the track and the wheels, 50 that both will be kept clean and the car rage will run smoothly, is shown in the accompanying illustration. The improvement has been patented by Mr. Charles M. Oronkhite, of Kimball, Win. Near each wheel and to one side of the carriage is secured a hanger from which the body of the saraper is suspended, upon a pin extending through a vertical slot in the upper end of the body, allowing for the vertical movement of the scraper. On the front face of the lower end of the body is a steel wear plate having a beveled lower edge, adapted to run upon the track and scrape off aawdust, pitch, ete, the plate being adjustably fastened in position by serews, so

CRONXHITE'S BCRAPER FOR SAWMLLSE
that its position may be changed as it becomes worn On a projecting ledge of the body in also secursd a one of the wheels. When the carriage is moved forward the scrapers bear upon the track and wheels, and when it is moved in the opposite direction the scrapers swing freely on their pivots.

AN LMPROVED BAFLTY VALVE AND MUFTLER
The illustration represents a simple and durable valve designed to permit the ready escape of the steam, while the steam will be so expanded and the eurrents so broken up before reaching the atmosphere that the improvement forms an efficient muffler. The invention has been patented by Mr. Erastus B. KunEle, of Fort Wayne, Ind. In the valve body is a spring pressed cup valve, held in lowermost position by hell-

EUNKLE'S BAFETY VALVE AND MUYFLER
coidal springs, the tension of which is regulated by a serew in a hub of a semi-spherical cap, provided with perforations, and screwing on a flange of the valve body outside of the valve sent. The hub of the cap has at Îts lower end a disk, there being a passageway for escaping steam between the wall of the cap and the edge of the disk, and a downwardly extending annular flange ou the outer edge of the disk its upon an annular flange of the cup valve. Directly below the latter flange is a ring screwing in an interior thread in the valve body to regulate the size of the steam passage outside the valve seats, and provision is also made for the escape of any steain passing into the cup valve. An annular curved lip , on the inside of the cup, extends upward and inward over the edge of the disk at the lower end of the hub, the lip guiding the seaping steam toward the center of the cap, so that the currents are broken up before the steam passes out o the atmosphere through the perforations of the cap. It is designed that, with this form of valve, the noise will be so reduced as to be hardly perceptible.

hachine for layive draikage pipys

The laying of drainage pipes is always a contly operation and consumes considerable time. It is generally effected in three operations, the first of which consists in digging the trench, the second in putting the pipes in place by hand, and the third in covering them with earth. The machine represented herewith is designed to perform these various operations at the same time, and with the aid of two men only, thus notably reducing the cost of installation.
It consists of a frame, $A_{\text {, }}$ mounted upon wheels, which rest direetly upon the ground, or, by preference, upon rails tha are taken up and laid again in front in measure as the wor progresses. This frame support another one, B, which carries the tool designed to excavate the trench, and which is nothing else than an endless screw, with eut ting edges, arranged vertically This screw is protected laterally by two plates that support the earth and prevent it from falling into the trench before the pipe have been laid. In the part of the serew that projects ahove the level of the earth a third plate, placed in front, prevent the earth aceumulated upon the spirals from falling upon the ground. This plate is not fixed, but is held against the screw by a lever, E , and a counterpoise, that if the serew brings up a large stone, the latter can enter the pasangeway thus formed.
The motion forward, as well an the motion of the serew, is produced by a cable winding over a
wheel, U, and ending at a stationary ongine placed at one end of the field. The starting or stopping is effeeted through a lever, P, placed within reach of the hand of the two operators. In manaure as the machine mover forward, the operator at the lower part puts pipes into the curved eylinder which extends to the bottom of the machine, and the pipes are thus laid upon the ground, extramity of the screw, is emptied upon an endless exth in the box, G, whence it falls into the passage, cothich may be inclined to the right or left, so that the earth may be made to drop upon the pipes, or be the earth may the right or left of the trench.
In order to prevent the earth from entering the In order the pipes, the joints are covered with a band of paper led to them by a guide seen at the back of the machine.
It may happen that the screw, in its operation, may meet with excavations deeper than the trench that it is desired to form, and that consequently the pipes may be insufficiently supported at such points. In order to remedy such a difficulty, there is arranged immediately behind the screw a drum, 8 , which bears constantly upon the ground, and against which abuts the extremity of the rod of a valve closing a box of sand. When the drum enters an excavation, the valve rod, actuated by a spring, lowers, and the valve leaves its seat and allows of the passage of a certain leavity of sand, which falls into a vertical chnte sitn quankity ond fils the exeavation A see ated behind the dris this layer exand and tom of the trench is thus made perfectly level.-Les Inventions Nouvelles.

HOMOGENETIC ENUMERATION.

It has generally been supposed there are but two systems of numeration, the Arabic and the Roman. Here, however, is a third, which, for want of a better name, we will have to call homogenetic enumeration. In this system the limbs of the human body may be made to represent all numbers and their relations that ean be expressed in the ordinary manner, and more concisely, for the use of ciphers is dispensed with.
The series consists of nine puppets that represent the
ired by very simple devices, such as standing them \mid two is shown by puppet with. right arm as at twenty pon their heads and making this equivalent to add- and left arm as at two; one hundred and atty-two ing a requisite 10,000 to their value, adding hats of diflerent patterns, which will give additional values; or by simply placing above or below the flgures a horizontal,

HOMOGENETIC ENUMERATION,

oblique, or vertical stroke; a right, acute, or obtuse angle; or in any way differentiating them from the Arst series here given. In order to represent any given number by means of these figures, it is first necessary to divide it into units, tens, hundreds, and thousands. Thus 1802 will not be represented as eighteen hundred and ninety-two, but as one thousand, right leg extended at right angles to the body; eight hundred, left leg drawn up to an acute angle with the body and bent to an acute angle at the knee; ninety, right arm from an acute angle at the knee; ninety, right arm from with ien arm as at two; one hundred and fifty-two with left leg as at one hundred, right arm as at fifty, and left arm as at two, etc.
A pasteboard puppet, as shown in the nccompanying Fig. 2, may be made and jointed with thread. It can be worked to solve arithmetical problems, and accordlug to certain axed succensions of movements or postures of the jointed parts may be made to add, subtract, or divide. In fact it may be taught to dance aocording to arithmetical measure and made to save a vast amount of eiphering, performing in this rospect the use of, the abacus.
You may also, if you choose to do so, make your puppet spell words. In order to do this you have only to call $1=\mathbf{A}, \mathbf{2}=\mathbf{B}, 3=\mathbf{C}$, etc., until you rench the ond of the alphabet, and put your figure successively into the attitudes representing the numbers that stand for the different letters forming the word you winh to spell. This whole scheme, although it has here a comical and amusing development, is a very suggeative one, and opens the question lately started in a popular scientife journal as to whether the Arabic pumeration, which has for so many centuries been supposed the perfection of number expression, may not be greatly improved upon.

Alteration of the Great Western izallway,
For several years back the alteration of the gauge of the track of the Great Western Railway, of England, from 7 feet to 4 feet 81/2 inches has been contemplated, and in the construction of new roll!ng stock that end was had in view. The gauges of several of the branch lines have been altered from time to time, until the remaining portion of the system not changed covered only a distance of about 200 miles. On May 10 the final arrangements were made for completing the change. Five thousand men were distributed at different pointsalong the line before midnight, Friday, in readiness for work, May 20 , the intention being to have the work on the main line completed by the folowing Sunday at midnight, and in one day longer the branch lines and silings completed. Throughon nearly the entire thenghont

900

nine digits by extending the left arm in different positions; first at a right angle to the body, then at an acute, and then at an buse angle. The elbow bent while the left arm extends at a right angle to hody gives a succession the same angles, and at acute angle anothar ccession, making nine in the left gives a second period, that of tens. The left leg reversing the angles of the left arm represents hundreds, and the right log reversing those of the right arm, thousands.
This series may be carried as much furthar as is de-

1492
horizontal; and two, left arm at an acute angle to the body. Eleven would be represented by pup
Twelve would be expressed by puppet ten with the left arm in the position of puppet two; thirteen by the alteration of gauge, after which the traflie will be left arm in the position of puppet two; thirteen by
puppet ten with left arm as at puppet three; twenty-
resumed as usual. at present be interfered with. By the uee of branch lines, ather roads and steamships, trafle was but slightly interfered with, and at 9 o'elook Sunday night, May 28, it was expected to run the first train over after
tion was effected by changing only one of the longltudinal sleepers on which the rails are laid. In some places renewals were made and at these points cross ties were osed instead of the longitudinal timbers which existed in the old track. Between some points where mixed gauges existed the track will not

The New Jiftal Vesblum,

With regard to the alleged disoovery of a new metal, vesbium," in the Veauvian lava, by Prof. Scacehi, Dr. T. L. Phipson writes the following in Iron :

1 formerdy dimocovered notable quantities of selenium in the arseniforous sulphur of Puzzuoli, near Naples, in 1808 I have lately examined the lava and yoilow erusts of the fumarole from the crater of Veeu-
vins (ppeciroens taken is 1879), and have found, besidee vius (-peciroens taken in 1879), and have found, besides the substances usually met with in volcanie products, cosuiderabie quantities of fluorine, which appears to
have escaped the notice of Sylveatri, and minute have escaped the sotice of Sylveatr, and minute
quantities of molybdenum, which has, parhaps, given quastities of molybdenum, which has, perhaps, given
rise to the beiief that a new metal, vesblum, exists in the yellow and green crusts of some ancient lava of Vesuvines,
Scecchi,
"After carefully reading the paper of Profenso Scacchi I am almont convinced that he was dealing with molybdenum and copper (and probably minute quantities of other substances) in the green and yellow crusts which he examined on the ancient Vesuvian
lava. Nevertheless, further researeh is requisite. The lava. Nevertheless, further researeh is requisite. The
manner in which I detected molybdenam in the yellow manner in which I detected molybdenum in the yellow vius in the spring of 1820 in as follows: The finely pulverized lava and its incrustation is treated with ho aqua regia; the solution, slightly evaporated and Without filtering, is neutralized by ammonia in slight excem ; yellow sulphide of ammoninim is added, and the vessel. It is then rapidly filtered, and the filtrate neutralized with hydrochloric acid in slight excese lowed to remain thus for two days At the end of that time the brown sulphide of molybdenum will be found apon the precipitated sulphur. (The sulphide celd liquid, and more so when its quantity is inall The precipitate is coilected on a platinum dish and The precipitate is collected on a platinum dish and phide into molybdic acid. Copper and lead are invariably present in small quantities in the incrustated cellular lava. The yellow erust also yields ammonia, and there are indications of many other substances to wich I may refer later. I find that the lava, after being treated with a boiling solution of caustie soda, may, perhaps, enable as to distinguish between the ava of modern and of ancient voleanoes.
ew Method of Pisting with iron and Ntekel.
Dr. Ludwig Monde recently lectured at the Royal Institution on "Metallio Carbonyls," in the course of whicl he dealt with the diseovery made by himself and Drs. Langer and Quineke, that carbonic oxide gas will take up metallic nickel at a comparatively low temper ture, and deposit it upon any surface heated to 180 C . and be exhibited fubes, globes, and other artieles of bright, coherent inetaillo nickel, which had thus been deposited by gas. Works are in course of erection at
Birmingham to carry out this curious process on a nanufacturing scale.
They also dincovered that at a moderate temperature carbonic oxide would take up metallic iron, and deposit
it upon any surface suitably heated. Ferro-carbonyl it upon any surface suitably heated. Ferro-carbonyl is, however, exoeedingly difficalt to make. Dr. Monde exhibited some of it in a small hermetically sealed glass Fe
Ferro-aarbonyl is, in a high degree, pyrophoric. It torms an amber-colored liquid, solidifles below $21^{\circ} \mathbf{C}$., about 1,466 at $18^{\circ} \mathrm{C}$. On heating its vapor to $18^{\circ} \mathrm{C}$. bright iron in deposited as a mirror. It remains perfectly unchanged in the dark, but when exposed to suslight it is transformed into a solid body, of remarkably fine appearance, of gold color and luster.
Soon after Drs. Monde, Langer and Quincke made known the existence of this body, Sir Henry Roscoe found it in carbonic oxide gas which had stood compressed in a cylinder for a considerable time, and expressed the opinion that the red deposit which sometimes forms in ordinary steatite gas burners is due
to the presence of this substance in ordinary illuminto the presence of this substance in ordinary illumin-
ating gas. Its presence in the compreseed gas used for aking gas, Its presence in the compresed gas used for lime lights has been noticed by Dr. Thorne, whose attention was called to the fact that this gas sometimes
will not give a proper light because the incandescent will not give a proper light because the
lime beoomes covered with oxide of iron.

A correspondest of Nature gives the following interesting facts relating to the strength possessed by eertain animals The shell-lese limpet pulls 1,984 times ite own weight when in the aif, and about double pull 1,408 times their. Fasting fleas on an average Mediterranean cockle Venus verrucoss can exert a puiling power equal to 2,071 times the weight of ita own body.
So great is the power poosensed by the oyster that to open it a force equal to $1319 \cdot 5$ times the weight of ite

Slectric Power now Used on Werld's Fat

 Eullainge.The engineers of the Construction Department The World's Fair use electricity to run the machinery ased in the work of construction, and have installed in the Fair grounds a perfeet electrical power transmision plant-one in which the conditions are of a pecuing the apparatus and the fact that this machinery is being constantly shifted from place to place as it in equired. The lines had, therefore, to be erected to atisfy any eall for power from any particular spot in the grounds. The buildings of the Fair are of wood overed with atuff which will give to them the appearance of imposing marble ediflces, and the framework nce of mpong of the buildings is of iron. The major part of the mahinery, , therefore, conais of maj hils to cut the lumber, and hoists for raising into their lorty position the immense girders, trusses and ponderous beans
In addition, there are moulding machines, planing In addition, there are moulding machines, planing machines, and pulverizers for the clay. The presence ures the absence of flre, from the danger of which the mployment of steam engines is no guarantee.
The entire plant consiste of the generators, the line and the motors, together with the various accessory appliances needed for the succensful and economical peration of the electrical apparatus. The current of 00 volts is generated from two 100 K . W. compoundwound Edison generators, of the Edison street railway type, belted direct to two high-speed engines. The duplication of the generating apparatus was decided opon in order that the machines should be continually supplied with power, and the chances of a total breakdown obviated, one generator being capable of supplying the entire demand for a short time in case the which the dynamos and engines are located is so substantially constructed that the term is slmost a misnomer. The same may be said of the pole line earrying the wires and making a complete circuit of that portion of the grounds in which the motors are located. It is of first-class construction and of the best material. The high standard of insulation of the wires is always maintained, each circuit being subcted to rigid daily inspection and tests.
In the manufactures and liberal arts bullding-th largest structure in the Kxposition, which covers area of thirty acres-one of the saw mill plants is
erected. This consists of a saw sharpener, band and sut-off saws, a rip saw and a boring machine. This compact outat in run by a 12 K . W. Edison shuntwound machine, belted to a line shaft. In the United States government building is another saw mill plant, run by a 15 kilowatt Edison motor. There is still another in the mines and mining building, and one in the horticultural building. In this last-named building is an eleetric holst operated by a 90 K . W. Edison moThe hoiat is of the donble-drum form, with two winc heads, and can be used to raise two separate weights at once, while at the same time the winch heads can be used to drag material into position. It is now used to raise the immense trusses and purlins of the dome of In the tding, and has proved eminently satisfactory In the transportation building a huge derrick has bee rolled to any requisite point, and has a 20 kilowatt kdi son motor erected in its base frame. In this building, as well as in the agricultural building, are other elecas well as in the agricultural buil
The Exposition building, facing toward the lagoon and ornamentsd on the exterior with Corinthian pila ters 49 feet high, has another saw mill plant. Thi electrical illumination at night, which in effeet will be anequaled.
Here, too, is the large clay pulverizer, belted to a 1 K. W. Edison motor, which drives it at a speed of 1,20 revolutions a minute. In the machinery hall, th Illinois State building, the fisheries building and woman's building, are other mills and planers.
Each motor is operated by means of an ordinary starting switch and rheostat and main line switches in series with each motor. Protection is afforded by suitable fusible cutouts, and the motors are also sheltered from dust, dirt, rain and accident as far as poswible. These machines are let to the contractors by the Exposition managers, the charge for their use being based upon the average daily maximum lond, ganged by suitable measuring instruments. As promised by the engineers, the result of the adoption of electricity ha portable steam engine and boiler have been compelled to acknowledge defeat. The motors have responded to overy call made upon them, even to the extent of sus taining a keavy overload for a short time. The entire plant is leased from the Edison Company, and in to be tranamiasion plant is aod condition as received. Thi only temporary, on account of its magnitude, the long distances separating the varions plants, and the fact that the line is easy of access from any point within
the grounds. The motors are seattered over an area
a mile north and south by half a mile wide. The abooa mile north and south by half a mile wide. The aboothe plant has enjoy prover that this means of power transminsion is as reliable as, if not more so than, any known method.

Areat Frozen Lake.

On the road from Irkutak to Kialchta, the frontier town of the Chinese empire, the terrible monotony of Mr. Price's journey was broken, for he had to eross Lake Baikal, the wonderful lake frozen for zine the Lake of Geneva, or 12,441 square miles, and has an average depth of no less than 5,404 feet, or more than mile Its origin, says Mr. Price is undoubtedly vol canic. The cold is trible that when canic. The cold is so terrible that when a hurriremaining in hummorks above the surface: but when Mr. Priee eroesed the cold had eanght the late asleep, and the ice and the ice was porforly mooth. "For about mile tromith from the shore the lee had a thin layer of snow over it, but we gradually left this sort of dazalig white carpet, and at length reached the clen ice, when I sal around me the most wonderful and bewitching sight I ever beheld. Owing to the marvelous transparency of the water, the ice presented everywhere the appearance of polished crystal, and although undoubtedly of great thicknees, was so coloriess that it was like passing over space. It gave me at inst quite an uncanny feeling to look over the side of the sledge down into the black abyss beneath; this feeling, however, gradually changed to one of faecination, till at last I ound it positively diffleult to withdraw my gaze from the awful depths, with nothing but this sheet of crystal between me and eternity. I believe that most travelers, on crossing the lake on the ice for the first time experience the same weird and fascinating influence About half way across I stopped to make a sketch and ake some photographs. It was no easy matter, as lippery thetting out of the sledge, for the ice was could hardly spite of my having felt snow boots rourn ances in the ice of the K Sen. This wonderful still nceb in the of the sounds, as though big guns were being fired at some little distance. They were caused by the cracking of the ice here and there. I was told that in some part of the lake were huge fissures, through which the water could be meen. It is for this reason that it is always advisable to do the journey by daylight. We reached Moufshkaya, on the opposite const, exactly our and a half hours after leaving Liestvenitz, the horses having done the whole distance of over thirty miles with only two stoppages of a few minutes each. It was evidently an easy bit of work for them, as they seemed as fresh when we drew up in the post yard a when they started in the morning."-J. M. Price "From the Arctic Ocean to the Yellow Sea."

Eemarkable Catalogue.

The British Museum authorities have just issued the cond volume of a remarkable catalogue, says the London Standard. Stored in the drawers and cases of he Museum are some 50,000 inseribed pleces of terra cotta or clay tablets, forming the rescued portions of the great libraries of Assyria and Babylon. The great mpetus given to cunelform studies during the last ?w years in Germany and America, where the orm part of the currienlum for a degree in Semiti
 the British Museum, the center of Assyrian studies hould be catalogued, and the trustees have now issue hese volumes, containing a descriptive catalogue of ome 8,000 inscribed tablets. The inseriptions in ques tion come from the Kuyuryik Mound, on the site of ancient Nineveh, which marked the ruins of the great palace and library founded by Assurbanipal, or Sar danapalus, in B. O. 600 . The tablets embrace every class of iterature, historical documents, hymns, prayen and educational works, such as syllabaries or spelling books and dictionaries. One of the most intereating sections is that of the omen tablets, produced by the court augurs and diviners. They saw omens in al things-the flight of birds, swallows, pigeons, the coiling of snakes, the movements of scorpions, the winds, the clouds, and, above all, the stars. The catalogues have been prepared by Dr. Carl Bezold, are beantifully rranged, and will tend to make the collections more ccessible to students, and, in time, better known to the general publie, who depend on specialists for the unraveling of the learning and wisdom of Chaldea.

Naval Carrier Pigeonas.

The Navy Department is experimenting with hom ig pigeons as a means of const commanication. Bird ave been placed on board the U. B. \&. Consteliation Annapolis. They will be taken 100 miles to sea and e liberated at different points off the coast of Maryland and Delaware, bringing messages to the Secre
tary of the Navy. -

Sorrespondence.

CHmate of San Diego.

the Bditor of the Soientiflo Amerioan

To the Editor of the Soiontive Mmerioan: City people were sweltering in a temperature of 90 to 06 degrees amid abnormal humidity records, residents of San Diego, at the southern extremity of 太outhern Cali ornia, were enjoying life in a maximum temperature o only 05 degrees on the dates indicated, with the relative humidity at 70 . The maximum July temperature here as recorded by the government is 79 degrees. Average relative humidity throughout the year is 70 . Cases of unstroke or prostration by heat are unknown, as is bydrophobia in dogs or other animals. With one of the most picturesque harbors in the world, a magnifithe ocean beach, fine hotels, and attractions of the first class for pleasure and cool-air neekers, San Diego cress summer wayfarers things unobtainable anyhere in the East.
M. Y. BEACH.

Shan Diego, Cal, June 16, 1892.
The Chloride of silver Bry Cell Battery.
The introduction of this form of constant current electric battery for use by practitioners is in ou opinion one of the most desirable advances of recent years. While the specialist may find his stationary offlce batteries all that need be desired, the general practitioner will welcome the invention of a battery which may be conveniently carried about elther in the buggy or by hand.
The chloride of silver buttery is furnished in such compact form that one of fifty cells can be easily carried in the hand.
It is claimed that this fifty-cell galvanic battery will furnish a current as strong as is needed for ordinary purposes. It is alwayb dry and clean, having no liquid to spill over its case or over the carriage floor. Another virtue which it possesses is that it is always ready to do its work on a moment's notice, without any manipulations except the attachment of the eleotrodes.
Our experience with it is limited to electrolytic work upon the skin, to the treatment of neuralgias and myalgias, and to the cataphoretic application of drugs. In such service we have found the battery always ready to do its work promptly, evenly and efficiently. For the destruction of hairs, warts, etc., a current of ten or tweive cells is sufficient-provided the sponge electrodes be kept free from grease by occasionally washing them with soap and water.
In the treatment of spinal paralyses or the destruction of large tumors we have as yet not tested it.
As might be expected, the chloride of silver cell is especially well suited for the generation of the primary current of a faradic battery. Such batteries are in the arket. The insertion of a metal pin sets them at nce to running. The quality of work done by the faradic battery depends of course on the excellence of
the coil rather than on the cell which generates the the coil rather t
Although the cost of these batteries is high, they do not get out of order, and the expense of reflling the cells is not grent. For ordinary uses the cells will last several years without any expense in repairing or refll-ing.-Maryland Medical Journal.

Brilliant Light.

The New York Herald says: Captain T. K. Bing ham, United States military attaché at Berlin, has recently brought to the attention of the Lighthouse Board an important discovery in flash lights, the in vention of Professor Schevin, of Berlin. The apparatus is only two meters high by thirty-five centimeter in diameter. On the inside is a bellows through which benzine gas is passed, while air is forced through pumice stone strongly impregnated with benzine This benzine gas is then passed through very finel powdered magnesium and saturated therewith, thene it passes out of an upright pipe through a small flame by which it is lighted, and here it develops a lumin osity of 400,000 candles. The activity of the apparatus is regulated by clockwork.
Economy is an important feature of the new invention, but its greatest advantage is its ability to penetrate an almost opaque atmosphere to a greater extent than any other light hitherto produced. With the use of ten centigrammes of the magnesium powder it is Bingham the official documents presented by Captain produced, and the flash can be candle power can be produced, and the flash can be seen on a clear, sun shiny day at a distance of aix miles. The lighthouse officials are so well impressed with the new light that they have already ordered an apparatus to be used in experiments at Staten Island.
Prom Helsingfors comes an acconnt of an extraordinary archieological find, consisting of a chest containing a quantity of ironwork and a parchment giving a Latin treatime on steam as a force. The pieces of iron form a rudimentary steam engine, which must date from the flrst half of the twelfth century.

The following are some of the principal dimensions of the establishment of the Newport News Shipbuild ing and Dry Dook Company at Newport News, Va.:

DTMESBIOKS Of DRY DOC	
Length on top............... .	
Width on top................. $130{ }^{\text {a }}$	
Width on bottom	
Width at entrance.	
Time required for pompligg water out of dock......... $1 \mathrm{l}, 30 \mathrm{~m}$.	
DIMENSIOXS OF BUILDINGS.	
Onlles builning, 3 stories, brick............. 40×300 feet.	
Pattern anc joiner shop, 3 eto	$60 \leq 300$
Machine shop, fron and brick..................... 100×10	
Boiler shop, iroses and bric	
Blecksmits ehop, brick	
Bending ehed, iron and brick	60×18
Ship fiters' shop, fron and brick................. 00×29	
Ship blackomith ehop, frame	
Pipe fuers' shop, frame.	
Power houne, lrick	
Lumber shed, 2 stori	40×300
Paint shop, brick................... 50 x	
Fitilig-ap shop, brick........................... 10×175	
Stable, 2 stories, brick \qquad 40×10 Timekceper's house, frame.	

PIKRS

SHIP WAYS.

The various shops are fitted with machinery of the latest pattern, and are capable of handling the largest vork known in shipbuilding
The machine and boiler shops are supplied with power-traveling cranes of 40 tons capacity, and the appliances throughout the yard for handling material are of novel design, enabling work to be done with dispatch and in an economical manner.

The Great Bridge at Memphis

On the 12th of May last, at noon, with impressive ceremonies, the great steel bridge aeross the Mississippi River at Memphis was formally deelared open for traffic. The Manufacturer gives the following description :
The crowd of visitors to the city was estimated at 30,000 , including many prominent men. The wholesale business of the city made the day a holiday, and the business, excepting of all railroads were clarishable reight. The man-of war Concord, gayly bedecked from stem to stern, formed part of the procession on the river.
The bridge, with all its approaches, is about a mile and a half long. The eastern end rests upon a high bluff, the same bluff and within a few hundred yards of the identical spot, as reputed, upon which De Soto, the discoverer of the Mississippi River, centuries ago, first stood and looked down upon the mighty streamthe bluff upon which the red men in times past met in council, thus giving it the name that it still bears, the Chickasaw Bluff. From this eminence the bridge start and stretches far across the river to the Arkansas side, where it continues on through the forest in the form of a viaduct, high above the ground, which at this poin is low and swampy, and in the spring subject to over flows, which characterize much of the land contiguons to the unbridled Mississippi. There are only two trues bridges in the world having larger spans than this the Forth in Whling the latter in India the longest trussed spans now in existence or building are these:

There are flve spans and six piers in the Memphis bridge, including the anchorage pier. The bridge pro per is exactly iron viaduet 2,500 feet in length, followed by a 3,100 foot timber trestle and nearly a mile of embankment to a unction with the existing track of the Kansas City Fort Scott, and Memphis Railway, a few hundred feet west of Sibley, Ark. This makes the total length of the entire structure $7,097{ }^{\prime} 12$ feet, or over a mile and half. On the Tennessee side the track is finished to connect with the Kansas City, Fort Scott and Mem phis Railway and the St. Louis, Iron Mountain and southern Railway in Memphis
The material of the main bridge is steel, largely from

Pennsylvania. Someidea of the immensity of the steel parts used may be obtained by knowing that the main posts are 80 feet high and weigh 28 tone. Many of the pieces weigh 10, 12, and 16 tons. The main pin of the cantilever truss is 14 inches in diameter and weighs 2,200 pounds. The material in the superstructure weighs 0,500 tons, and one of the remarkable features of engineering skill, as well as an indication of the expertness of Pennsyivania's steel men, is that every one of the myriad of minute pieces was made in advance to fit the place for which it was intended. The Pennsylvania steel came from Pittsburg, Pencoyd, and Pottstown. Some of the steel work is unusual. One of the plates resting on the first pier from the Memphis side and coming out at the top is the largeststeel plate ever made in the United States. This plate reaches from the supports under the bridge to the extreme top, and from side to side, being open through the center, and from side to side, being open through
through this apertare traffic passes.
through this apertare trafic passes.
The pla . Meriso ine in 1888 by George 8. Morrison, the engineer. The difficult work of placing the caissons in the river preparatory to sinking the pier was begun in December, 1880, and the cop-
ing of the last pier was laid on May 15, 1801. The two ing of the last pier was laid on May 15, 1801. The two
sides were joined and the complete chain formed besides were joined and the complete chain formed be-
tween Arkansas and Tennessee on Wednesday, April 6, 1892
The river piers are sunk to depths varying from 78 to 181 feet below high-water mark. All were sunk by the pneumatic caisson process, and are of masonry from the caissons to the bridge seat. The stone that shows above low-water mark is granite from the quarries near Atlanta, Ga. Below water and the interior of the piers is limestone from Bedford, Ind. The heights of the caissons vary from 40 to 80 feet, and the piers from 93 to 158 feet.
For the purpose of comparison the following state ment regarding some of the greateet bridges of the world is given

The bridge is located near the spot where Ferdinand de Soto crossed the Mississippi in 1541, and in excavating for the short pier on the Tennessee side some Spanfound.

To Give Vlowers an Araheinl Color.
William Brockbank, in the Gardenerg' Chronicle, suggests the following for the artifcial coloring of flowers: Place the cut flowers in solutions of anilin and similar dyes. Anilin scarlet, dissolved in water to about the transpareney of claret, has a very rapid action on flowers, coloring them pink and scarlet. Indigo carmine produces beautiful blue tinte. The two combined dye various shades of purple, with curi ous mottled effects, some parts of the flowere becom ing pink and other parts blue and purple. Greena are produced by using the blue dye with yellow. In digo and cochineal are not very satisfactory. Among some of the effeets produced are the following: Lily of the valley flowers become beautifully tinged with pink or blue in six hours, narcissi are changed from pure white todeep scarlet in twelve hours, and delicate shades of pink are imparted to them in a very short time. Yellow daffodils are beautifully striped with dark scarlet in twelve hours, the edges of the corona iso become deeply tinged, and the veining of the note that it is by very strongly marked. It is well through the vascular tissue of the flowers that the affeet is produced, and the result is beautifully seen in white tulips, which in a few henrs become prottily white talips, which in a few hotrs become pretily marked with pink, blue, or whith other famillar flowera, solution may be. So also with other familiar fiowers.
Forced leaves of the Swedish turnip, grown in the dark, Forced leaves of the Swedish
are very susceptible to color.

Tent for Bridges.

The Centralblatt der Bauverwaltung does not be lieve in the value of load tests for bridges. It considers that far too much importance is attached to if, and that, accordingly, erroneons deductions as to the safety of bridges tested by applying loads and noting the resulting deflections are abundant. The case in ited of an iron bridge in which a recent careful inpection revealed alarming local corrosion. still, it teat load, applied only a few days before, had produced a deflection well within permissible limits, and the railway company owning the bridge was therefore satiofled as to its sale condition.
sterilzation of water hy reat. Hygienists have in all times recommended the use of boild water when there was reason to suspect the wator employed for drinking purposes. This precau tion is atill among thoes that the attention of the publie is earnently called to as soon as an epidemic of diar thoes, cholera, etc., is threatened or develops itself. But, although so general a measure is eany to indicate to private individuals, it is more difficult of application to the population in general of a crowded locality. This in the raison detre of Mears. Rouart, Geneste \& Herscher's new apparatus for sterilizing water by heat. This ingenious apparatus furnishes the solution of a problem which has for many years occupied the
tion of the Consulting Committee of Publie Hygiene of France and particularly of Public nent president, Prof. Brouardel. There is not a week pasess in which the committee is not informed of the existence at some point in France of some epidemic or other, such as of typhoid fever, for which there is reason to recommend the use of boiled water to the population attacked. The seme is the case in the army at tacked. The
Now the French Board of Health, which possesess a most remarkable materiel of disinfeeton, has for a long time desired to add thereto ome apparatus designed for the sterilization of water by heat, and which it might induce cities to procure, or which it might send to localities visited by an epidemie when the necessity therefor should be demonstrated. This project has Jast been put in execution, after numerous ten-
tatives, by Meemn. Ronart, Geneste \& Herscher, tatives, by Meesns. Ronart, Geneste \& Herscher,
In the following way: The drinking water is led into a pump, whence it is sent to the lower a metallic cylinder containing a worm. When this cy inder is illed, the water reaches the bottom of a seeond eylinder constructed in the same way, and then it is
finally led to a receiver, in which it is heated to 130° finally led to a receiver, in which it is heated to 180° with a boiler (Fig. 1), After the water has boiled for a certain length of time it is forced into the worms of the two eylinders designed for the reception, in the flret, of the pare water ; then, after cooling, and a subsequent ilitration through a layer of silicious sand, it fows outaide.
The boiled water mast be promptly consumed, for, Wike sll pare water, it possesses the singular power of becoming rapidly, but temporarily, self-infected. Whatever may have been said of it, it is easily digestible after it has been suffleiently aerated. It would be well, then, to obtais it in sufflieient quantity, at least, for drinking purpoeen.
Fig. 2 gives a diagram of this ingenious apparatus which comprises, ensentially: A boiler with an inde pendent shiter. The exchangers, which are cylinders prev, and a filtef. The exchangers, which are cylinders provided with worms, constitute the most interesting and original part. The impure cold water that they receive is beated by the temperature of the boiled water circulating in the return worms, and this same boiled water beeomes cooled therein by giving up its heat to the water which goes to the boiler. In this way the exchange of temperature is effected without expenea, and it is pomaible to earily furnish, on its exit from the apparatua, water inufAciently cool to be used at once.
Is fact, experience has proved that water that has paratus, for at leaas fifteenparatus, for at least ifteen minuter, to a minimum temperature of 130° may mith a temperature but g° higher than that whit it had when it entered. As had when it entered. As for the micro-organisms that it contained, there no longer remain any trace of them. It is absolutely sterilized. The statements
of Mfeers. Miquel Pouchet
of Meems. Miquel, Pouchet polnt. It remains to be kno demonstrative on this suiphuric acid to ten or tweive of water); the acid atcan be put in nee. Meem. Rown how such an apparatus tacks the surface of the iron and releases the seale. have devised several arrangements to this effect. In one, it is by the aid of a hand pump that the water is introduced; in another, much larger, a pump fed by the boiler allows the impure water to circulate in the various parts.
These different models are mounted upon wheela, so that they can be moved about and installed in situ in commonities visited by epidemice. Fig. 1 represents bare portions or the casting are protected, the sand is obvidattack the iron as readily as the scale. As acee of the irmpracticable to proteet the bare surmethod has vory little of practical value.
an installation of this kiud upon a village square Whither the inhabitants are coming to fill thelr pails and pitchers with water that has been sterilized by bolling, that is exempt from germs, and that is without a disagreeable tasta. They obtain the water from a (ube, whose extremity they lift up, so as not to soil it. The low net coet of water thus boiled favors the application of this industrial process, which has already rendered signal services in the barracks of the marine at Brest, where typhoid fever prevailed for many years almost in an epidemic state.-La .Nature.
ooed and simple Plumbing Idea.
One of the fleest object lessons in sanitary plumbing

Fig. 2.-diagram of the apparatus. the United States is, according to the Philadelphia Ledger, the new Institute of Hygiene at the University of Pennsylvania. Throughout the building the pipe dirtinetive left outside the walls, and each painted a istinctive color. Thus a maroon pipe, wherever found, stands for cold water, white means gas, and yellow thows drainage. This makes it possible to trace each ystem in all its branches, and test it at will, from the celar to the roof. About everything in the way of drainage devices now known is in the building, and anything put on the market will be given a fair trial.

Cloanting Castinge.

Two methods of eleaning iron eastings are in general use. One, which is applicable to small castings, consists in treating the pieces in a tumbling barrel, the knoeking of the castings together seerving to dislodge the sand attached to the casting, but the objection to this method is that the treatment which removes the and also defaces the castings, by removing the finer features and destroying the corners. The other method of cleaning castings conaists in placing them for several

The method of lathe testing, which consists in bring ag the centers of the lathe together and sighting them, of no value for even ordinary machine work. If the enters could be adjusted exactly in line by thi nethod, when they are separated they may be found correet for any other distance
It is practically impossible to turn a true cylinder between the centers of any lathe, however perfect true cylinders can be produced by grinding only, the work being supported upon the centers.
The first operation in teeting a lathe is to put the enters in line at a distance of from two to ten feet, ing to the size of the lathe. Place in the lathe a plece of sharting, stiff enough to support itsel whout springing; square up its ende, and cener it, taking care to have the centers drilled eep enough to prevent the lathe centers from bottoming. Insert a pin in the end of the haft, so that it can be driven without the use the lathe dog. With a sharp tool tara the head end of the shaft for a short distance. Then, without moving the tool, take the work out of the lathe, run the tool carriage down to the tail atock, replace the work, and turn the pposite end of the shaft for a short distance. f the calipers show no variation in the size of the work at opposite ends of the shaft, the athe is in line; if there is a difference, the tail tock must be set over until the tool, without further adjostment, turns the same diameter us it did at the opposite end of the lathe. In naking this test the tool should be set exactly ovel with the centeri
With the lathe adjusted to this extent, remove the turning tool and insert another having a very fine point. Run the carriage back, remove the live center, eplace it with a stick three feet long fitted to the pindle and firmly driven in the place of the center, an the carriage up and allow the fine-pointed tool to cratch the end of the stick as it revolves; if it makes a point, the lathe is true. If the tool describes a small ircle, the lathe is out of true, and the headstock must er readjusted by scraping the surfaces which bear upon the bed, to make the necessary correction. Remove the tool and run out the tail spindle; if the dead center goes into the point made by the tool, the lathe is true. If the center does not enter the point, the tailstock must be corrected by scraping, as in the case of the headstock. This method of testing is open to the objection that the stick may spring of its own weight. Lathe builders have special apparatus 'for this purpose, consisting of rigid metal bars or light rods stiffy trussed.

Br. Brown-Sequard's Trentment.
At a recent meeting of the Academy of Sciences, At a recent meering of mueh interest was created by Dr. Brown-
Sequard's paper on his system of treatment with Sequard's paper on his system of treatment with injections of a solution of sperm fluid. The savant's address bristled with proofs of its efficacy. He instanced a patient of 80 , living at Mauritius, who was restored from a paraytic and atonic state to health and vigor. Another somewhat younger man, bed-ridden, and regarded as moribund, was re-established suffleiently in a fortnight to take severe horse exercise, "and now," drily added the doctor, "his health improves so rapidly that the family have forbidden the medical man to continue the treatment." Dr. Brown-Sequard clains that the 90,000 injections made by him during the last three years have been invariablv successful, and that the aygtem is without equal in cases of weakness and debility. He specially touched on the treatment of tuberculosis and locomotor ataxy. The physical improvement, far from reacting on the patient's at- spirits, invigorates the mind at the same time as the body. Thin remark, coupled with the eminent docor the mover method. It in said that it will readily appearance, created a whisper in the assembly that onditio sand spots, leaving the castings in good Dr. Brown-Sequard had himself laid the guinea pige wo mond however, that unless the under contribution, although he did not mention the

A sodA water fountain which works on the nickel in the slot plan has been invented; the customer helps himself, but cannot get more than 5 cents worth at a time.
§rientific gmmeriau.

STEAM TRER-FELLTEG AND CROBSGUTTINO

 MACRINERYThis arrangement of mechanism, by Mr. Allen RanThis arrangeme, was recently illustrated in Kngineersome, of which we are indebted for our engravinga and the following particulars :
the following particulars: The machines have a long stroke, which obviates the difficulty of the teeth elogging, and are mounted upon strong axle, supported on a pair of wheels of such a diameter as to enable the saw to cut through a tree at a height of about three feet from the ground. This a height of arriage is fitted with a pair of shafts, to skelo a horse can be harnessed for transporting the improvement relates to steam croes-cut saws, which are
ground, the machine can be readily detached from ite
to short stakes driven into the ground. A strong bolt passing through each shaft takes into the slot in each tay, to which it can be instantly set fast by means of a nut furnished with a handle, and thus, by raising or depressing the chafte, the saw can be set at the re quired elevation to suit logs lying in any position.
The above-described improvements render the mahine not only much more convenient to work and adust, but suit it for dealing with trees of very large izes. When found desirable to fell a tree close to the round, the machine can be readily detached from it improvement relates to steam cross-cut saws, which are a

Edible Chrysanthemama
Chrysanthomume, those handsome antamn flowers that are so highly esteemed by us for their beauty, are valued in Japan for an entirely different reason. The Japanese, in fact, do not raise chrysanthemums as ornamental plants, but cultivate them as edible ones, It is the flowers that are employed by amateurs. Those are eaten as a salad after being steeped in water and then boiled.
In Japan, the flowers of the chrysanthemums constitute a truly popular dish, and during the months of ovember and December bunches of them, washed ad carefully displayed, may be seen in the stores of

IMPROVED STBAM TREE-SAWING MACHINE.

machine in the forest, and which also facilitates the novement of the saw from tree to tree by hand.
The entire machine can be partially rotated on its axis, so that, by simply turning a hand wheel, the saw can be set to cut in a vertical direction, or at any angle | between the horizontal and vertical positions. It generally happens that shen a large tree falls it does not ie flat, as its branches hold the apper part of the truak off the ground, and in order to croseseut trees lying in such positions square, it is necessary to incline the saw somewhat from a direct vertical line, which is readily done by the adjustment last described. Again, in order to eross ent through a highthe other hand, it is necessary to elevate the saw, or, on press it. To eff in the case of a low-lying log, to depress it. To effeet this, slotted stays are attached to

Axed at the entrance of the mill for cross-cutting logs as they are being brought in to any required lengths, When a heavy log is being dragged into the mill, it is extremely diffleult to arrest its progress exactly in the position required in front of the saw, while to hift it endwise even a few inches by hand is a work of considerable labor and time. To obviate this, Mr. Ransome's saw is mounted upon a short bed or gantry, the upper surface of which is level with the floor. This bed, fixed in a position parallel to the \log, is proaded with a powerful square thread sorew, which pases through a nut attached to the under side of the passes through a nut attached to the is a large hand weel, overhanging the gantry, and thus, by turning weel, overhane beadily brought oppoaite to the exact spot at which it is desired to crossout the log.
all the dealers in vegetables. Almost all the varieties are edible, strictly speaking, but those to which preference is usually given are the ones with small deep yellow flower heads, and which are not mo pretty as the varieties cultivated for ornament.

Tempering springe by Eleetrielty.

Electricity as an aid to gun making is, it is said, in successful use at the gan factory of 8t. Etienne. The particular use to which it is there put is in the tempering of springs. These consist of steel wire wound spirally, and a current of 23 amperes at 45 volte is passed through. Rapid heating resulta, and whon the required temperature has been reached, the current is broken and the spring falls into a trough of water. One workman can temper 2,400 springs per day by this method.

Nataral Mistory Notes.

Abbino Animals in Old Mines.-In connection with the recent resumption of mining along the famons "blue lead," near Bangor, Cal., a most peculiar diseovery was made. Among the mines now being worked is the old Potter mine, which has been rechristened the Biahop mine, after ita present owner. When this mine was first reopened, a young man entered a dry slope leading to a second shaft, the existence of which was unknown, owing to a thick growth of brush and trees noticed a large number of flies buzsing about him in a very troublesorne manner. He made several slaps at them, and ascidentally caught one. On examining it by the ald of his lantern he was nearly startled into etting it escape by reason of its uncanny appearance. It was abeolutely white, with the exception of its eyes which were red and unusually large and prominent. Scarcely had the explorer recovered from his aurprise at the white flies, when he was startled by the whiring sound of a rattleanake's tail. Looking carefully around, he saw the oyes of the reptile, and threw a
rock in the direction of them. The rattling promptly eased, and a mass of white, alistening convolutions writhed into view from behind a protruding bowlder. A couple more rocks dispatohed the reptile, which proved to be a rattler over four feet in length. One of anake's rattles, so its age could not be ascertained, but it must have been an old individual. The color of the snake was pure white.
Prof. Harlow Ballard, of Buffalo, N. Y., who was
visiting Bangor in seareh of mineral specimens, secured Fisiting Bangor in search of mineral specimens, secured the snake and several spesimens of the white flies, which he preserved and ahipped to the Enat. The professor is of the opinion that the flies are the offspring of some imprisoned in the slope years ago by the riaing of the water in the lower workings. The old and partially filled ahaft allowed air but no light to enter the
slope, while the stream flowing into the slope may have provided them with food.
The snake, he thinks, may have been carried down by the water while very young, as it is scarcely possi-
ble that it is thirty years old, which it would have been had it remained there ever since the mine was flooded. What the reptile ate during its long captivity is among the mysteries. Since the reopening of the
Bishop mine the white flies have entirely diaappeared, Bishop mine the white fies have entirely disappeared,
und a few which Prof. Ballard kept in a small glass und a few which Prof. Ballard kept in a small glass a week after exposure to the light.
The Longevily of Birds.-Ornithologists have not yet definitely solved the question as to whether birds are not, of all animale, thooe that have relatively the long-
est existence. The following are a few examples of the est existence. The following are a few examples of the
longevity of birds borrowed from the Reoue de BArt Veterinaire, published in Russla: It is established that swans live to be three hundred years old. Knauer, in
his Naturhistoriker, elaims to have seen a large number of falcons a hundred and fifty years of age. Eagles and kites likewise live for a long time. Knauer tells of
the death, in 1819, at Berlin, of a sea eagle that had the death, in 1819, at Berlin, of a sea eagle that had
been eaptured in 1715 , that is to say, a hundred and four years previonsly, and which was then already som. 3 years of age. A white-headed kite, taken in Austria in
1706, died in the poultry yard of the palace of Schon1706 , died in the poultry yard of the palace of Schon-
brunn, near Vienna, in 1894, after passing a hundred brunn, near Vienna, in 1894, after passing a hundred survive several human generations. Dueks and cue-
koos are likewiee very long-lived. It is claimed that koow are likewise very long-lived. It is claimed that
ravens often reach the age of a hundred years. Mag pies, which live to a very advanced age at liberty, do eage. It is not rare to iee domestic cocks of fifteen years, and with care they reach twenty. The limit of species live from eight to eighteen years; Nightingalee will not endure more than ten years of captivity. Canaries reared in a cage live twelve or afteen years, but in their native
dozens of years.
Ants and Mites.-The curious habit which ants have of harboring in their nests a variety of other insects if a well known fact. The reason for this singular exer cles of hospitality is by no menns always apparent; in
some cases, bowever, it does appear to be fairly clear, particularly in the case of certain mites (Gamaside), Whose habits and customs are trented of by Mr. A. D. Michael in the recently published part of the Proceed-
ings of the Zoological Soclety of London. The author ings of the Zoological Society of London. The author Corsles and in the neighborhood of Innsbruek, and in many of these sests there occurred various species of
Gamasids, whose relation to theirhost formed the subject of the inquiry dealt with in the paper. The neste of a swall yellow ant, Tetramorium ocspilosum var. meridionale, were infested with two kinde of Gamasida. One species, which Mr. Michael describes as new, found to the nerts, but also upon the ents themselves and, when the neete were disturbed, the mites, being were borne off to a place of safety. The ants appeared
to have not the slightest objection to this familiarity on the part of their guests ; on the contrary, indeed, for they carried off the mites without making the least attempt to dislodge their riders, and ants are not as a rule the most peacefully disposed of animals. In the case of another species of ant, the care taken of the Gamasids was even more remarkable. When danger threatened the colony, the ants carried off both the mites and their young, just as they carry off their own young. After a careful series of experiments, Mr. Michael comes to the conclusion that the mites repay the hospitality shown to them by removing the bodies of deceased ants, which they utilize as food.
The Galls of Tree Leaves.-Mr. Laboulbene, as the of galls upon the leaves of trees, finds that these singu lar excrescences are not capable of being produced by the action of stings, incisions, or the introduction of drops of formic or other acide, nor through the effect of the presence of foreign bodies, or even of the eggs of non-galligenous inseets. On the contrary, he has been able to establish the faet that galls develop when cer ain insects called galligens deposit their eggs upon the lead. There exist two causes of production; one, and the prineipal of which, is the result of the vesieatory other the vivification of bacteria analogous to those other the vivification of
Wingless Female Lepidoptera,-Mr. G. A. Poujade in La Nature for December 20, 1801, gives an admirabl nummary of the natural history of the European species of Lepidoptera without wings, in the course of series of articles upon the influence of artifleial ligh apon insects. He calls attention to a most interesting observation by Giraud, made as far back as 1865, and which has seldom been repeated, to the effect that the wingless females of Hibernia and Cheimatobia were lound around the lanterns in the Bois de Boulogne, where they were supposed to have been either attract ed by the light or the abundance of male insects which had been so attracted, and had climbed up the lamp f the lamp. The more natural explanation seems to as that these females had been carried by light-attracted aales while in the aet of copuiation and had been de erted on the glass side of the lamps. It would be very interesting to know whether similar observations hav canker worm is abundant.-Insect Life.
History of the Discovery of the Sexuality of Plants. At one of the last sessions of the Society of Botanists of Brandebourg Mr. F. Moewes recalled the fact that the knowledge of the sexuality of plants had recently seen its bicentenary jubilee.
In fact, it is two hundred years ago that the phy ician and botanist, Rod. Jak. Camerarius, professo at Tubingen, separated two female types of the French mencury (Mercurialis annua, \mathbf{L}) from a group of
plants of the same nature growing in a garden, and replants of the same nature growing in a garden, and re-
marked that they presented hollow seeds only. His eport upon the subject, published in the ephemeride of the Leopoldine Academy, bears the date of December 28, 1601. This was the first experimental research by which Camerarius demonstrated that plants are re produced, like animals, by means of sorual organs, Until then, only confused notions existed upon the subect. No one had thought of submitting the queation o the test of experiment. Camerarius recognized that the stamens constituted the male organs and the pistil the female organ. This is shown by the title of his memoir, which appeared in 1794: "De Sexu Plantarum Epistola.
A hundred years after Camerarius' remarkable disovery, there appeared a book treating of this same exuality in plante, upon which it threw a new and rilliant light. Like its senior, it was not appreciated y the seientists of the epoch. Although Camerarius had, from 1001 to 1008, uhown the necessity; of the interention of pollen in the aet of fecundation of plants and of the production of the seed, or, to employ an expression of Goethe, that plants abandon themselves in the bosom of the flower to the sports of love, the special always an enigma. Yet flowers, with their peculiar properties, their wealth of bright colors derived visibly rom the green of the leaves, the surprising variety of their forms, and the odors with which they perfume the learned world. It was not till 1708 (it will, thereCore, soon be a century) that a schoolmaster, Regent Christian Conrad Sprengel, of Spandan, rent this veil in his turn by demonstrating with a rare penetration, ruly bordering on genius, the functional role of the organs of the flower, and principally of the party-colared petals,
The facts brought to light by him, and which now orm part of the uncontested patrimony of sclence, appeared to him so surprising that he entitled his book, The Mystery of Nature Unveiled in the Framework and Fecundation of Plants." The discovery of Sprengel, who, let us say by the way, recommended the boanists of his time to study plante in ofoo, in the very midat of nature, instead of being content with an ex-
amination, in the eloset, of dead and withered specimens contained in a herbarium, was of so high import ance for the scientific explanation of the function of the various floral organs that it is hard to explain how sprengel's work, stil so remarkable to-day and aiways no interesting to study, could bave passed so completely annoticed. However incredible it may appear, it is none the less true that this genial book remained completely ignored until 1803, when it was brought to ligh again by Darwin, who was then occupied with the fully this field of investigation.

The Treatment and Feed for sick Horsen,
F. T. McMahon, veterinary surgeon to the Chicago City Railway Company, the Chicago Fire Department etc, communicaten to the Street Railvoay Review a
lengthy article on the treatment of sick horses, from lengthy article on the treatment of sick horses, from which we copy. The principal substances from which we seleet articles of diet for the sick horse, says the vriter, are bran, carrots, oatmeal, linseed, ete.
Bran stands decidedly foremost as the food most generally in use for the invalid horse; it acts as a laxative; is frequently tempting to the appetite, and is ansy of digestion. There is no part of general treat ment more universal than offering this substance as a change of food. Is the horse very weary, and his powers of digestion weakened in consequence, we induce him to take a warm bran mash, which comfort ably distends the stomach, and satisfles any craving or food, thereby enabling him readily to lie down and rest his enfeebled system, until repose restores its wonted vigor. Does he show slight symptoms of cold fever, a warm bran mash is a convenient plan of teaming, and consequently soothing, the irritable muous membranes of the air passages; it is a substitute or the more stimulating diet he is accustomed to, and ently promotes the activity of the digestive apparaas; it is also a convenient medium for the exhibition of certain simple remedies, to be mentioned hereafter. Is he incapacitated by lameness, a lower diet than that with which he is indulged when in full work is judiious, and bran is selected. Is it necessary to administor purgative medicine, a bran mash or two renders the bowels more susceptible of its action, and a smaller portion of the drug is therefore required to produce the desired effect, there being, at the same time, less risk of painful spasms accompanying its operation. Bran mashes may be given hot or cold-cold are perhaps quite as grateful to the horse; but the nibbling of the hot mash in catarrhal affections is particularly benefleial, from the necessary inhalation of the steam arising therefrom.
Of all the roots by which horses are tempted, the carot, as a rule, is the favorite, and perhaps the most eneflial one. It is said to be somewhat diuretic in its effect, and to exercise a salubrious influence on the kin. Certain it is, when eut and offered frequently y the hand of the groom, a sick horse is coaxed into ment, and the greatest beneflit results. For the ailing horse, then, carrots are most valuable as an article of diet, and a few may be given with advantage even to the horse in healthy condition.
Oatmeal is most nutritions,
Oatmeal is most nutritious, and, as a food for the convalescent horse, is most valuable; the bruising process the grain has undergone breaks the husk, and renders it more easily acted upon by the digestive pow-
ers. It is usually given in the form of a gruel, as which ers. It is usually given in the form of a gruel, as which it is one of the most essential articles of diet for the
inflimary. It ls also a ready mode of supplying the thed, thirsty horse with nourishment after exertion, when he returns to the stable.
Linseed is decidedly included in the sick diet roll. It is nutritious, and from its oleaginous nature, soothing to the frequently irritable mucous membrane of the allmentary canal, and hence to be particularly recommended in the treatment of sore throats; nor is its bland effect local only, its more general influence is particularly observable in affections of the kidneys. It may be given either boiled, forming, when cool, a gelatinous mass, mixed in that state with bran, the liquid after boiling may be offered as a drink, Grass, hay tea, etc., are also very useful in the treat with the other remedies.

Professor Coelke's Saltpeter Remedy
Dissolve one tablespoonful of saltpeter in a pail of water. A pint poured around each hill of cueumbers or squashes is very good for the plants and very bad for the bugs, both striped and black, which burrow at night in the earth about the plants. Cut worms are also said to diasolve like earth treated with saltpeter This is a remedy which would certainly be very useful to the plants, and If, as is claimed, it destroys or keepm away insect marauders, it will prove most valuable. This saltpeter solution is useful to any plant which is attacked by insects which at any time burrow in the ground. It does not appear to be wholly certain, wished.
oxygen and Pure Water for Health.
In a lecture on the advantages of vegetarianism in malarial climates, by Doctor J. H. Kellogg, he speaks of the necessity of an abundance of oxygen and pure water to insure good health.
There are no purifying agents for the blood like pure air and pure water. Oxygen is a general house cleaner, it saturates the blood, and thus reaches every part of the system, while water is just as good and necessary for cleansing the tiasues on the inside of the body as it is for keeping the outside of the body clean. The notion that many people have of purifying the blood by tion that many people have of purd-as though impure putting something into it is absurd-as though impure substances could have any puriforing elfing be much improved by being washed in a decoction of burdock root or sarsaparilla? Let one with blue lips and pallid face start out briskly for a run, and in a short time he comes in with rosy lips, bright eyes and an altogether different countenance. The oxygen which he has been taking in has served to wash out the effete matter and burn it up, and heis a new man. Then take plenty of exercise in the open new man. in well-ventilated rooms, eat simple, wholesome food, and drink freely of pure water, and you will need no other blood purifier.
gEMARKABLE EXPEBIMENTB WITH LIQUETIED AIE ASD LIQUEFIED OXYGEN AND OTHER LIQUEFIED eases.
Professor Dewar recently delivered a lecture at the Royal Institution dealing with the above subject, in the presence of a large anditory, with Lord Kelvin president of the Royal Society, in the chair. We fol low the report given in the Engineer.
Professor Dewar began by thanking those who had presented the Royal Institution with the machinery and appliances which would enable him to show the experiments of that evening, and at that early stage of the procesdings he felt bound to thank his two as sistants, Mr. R. N. Lenox and Mr. J. W. Heath, for their arduons work for some time past in preparing for the demonstrations of that evening, in the course of which he should use up a hundredweight of liquid ethylene, which had been weeks in manufacture from alcohol and strong sulphuric acid, and compressed in the laboratory. He was thus enabled to go farther than in his lecture at the Faraday Centenary. The apparatus before them in the theater was supplied by means of pipes from the laboratory with liquid ethylene and with liquid nitrous oxide; the latter the apparatus in the first instance.
He first filled a test tube with liquid oxygen, of which he said that he should probably use a pint in the course of the evening. They would notice that it was not clear, but looked milky, from the presence of some impurity, of which impurity he would say no more, as he did not know its cause. He would, however, pass the liquid through filtering paper as one would filter water, and they could see that it came through quite clear; on throwing an image of the test tube and its contents upon the screen, the liquid oxygen was seen to be of a cold pale blue color. It was boiling violently at the temperature of the air, with a hissing noise, and giving off clouds of, apparently, white smoke, due to the freezing of the moisture in the adacent air of the theater. Liquid oxygen boils at -180° below the zero of the Centigrade scale, as determined by thermo-electrical measurements.
Here a liter of liquid oxygen was placed in a flask, and deposited on the lecture table, from which flask Professor Dewar took some now and then, when required in the experiments. He then drew attention to the following table

Boiling Points-Below the Freesing Point of Water上,
Carbonic acid. ..
Nitrous oxide...

Professor Dewar next showed that liquid oxygen is a non-conductor of electricity, and that a spark onetenth of a millimeter long, from a coil machine which would give a long spark in air, would not pass through the liquid. It gave a flash now and then, when a bubble of the oxygen vapor in the boiling liquid came beinsulater terminals. Thus liquid oxygen is a high insulator.
As to its absorption spectrum, the lines \mathbf{A} and \mathbf{B} of the solar spectrum are due to oxygen, and he showed that they came out strongly when the liquid was interposed in the path of the rays from the electric lamp. . Janssen had recently been making prolonged and these oxygen lines dizappeared Blane, and he found that the solar en lines disappeared more and more from The lines apeetrum as he reached higher altitudes The lines at all elevations come out more strongly
when the sun is low, because the rays then have to
traverse greater thickneases of the earth's atmo
Here Professor Dewar, by means of liquid oxygen, and its evaporation accelerated by a high exhanstion pump, liquetied some common air in an open test tube, at the ordinary pressure of the atmosphere. It came down clearer and "smoked" leas than did the liquid oxygen; it also boiled more quietly. This liquefying of common air, he said, in useful, as by its evaporation future than had hitherto been reached
He then spoke of Miehael Farached
849 on the its poles, and in subsequent experiments he between the magnet, now historical which had heen employed Faraday. He also drew attention to the following table, in which + means "magnetic," and - means "negative."

Magnetic Relations of Gases-Faraday.

	In Ait.	$\underset{\substack{\text { In } \\ \text { Carbonie } \\ \text { Acid. }}}{ }$		Coul ${ }^{\text {In }}$ Gas.
Air.	0	$+$	+ weak	
Nitrogeb......	-	t	- atrong	
	-	0_{0}	+ ${ }^{-}$	+ sroag
Carbonic oxide.......		\pm	\pm	- weak
Ethyliene..............	-	\pm	+	weak
Aydrochloric acid......	二		- weak	

Professor Dewar stated that Beequerel was before Faraday in experimenting upon this subject. Bee querel allowed charcoal to absorb gases, and then examined the properties of each gas. He thus dis-
covered the magnetic properties of oxygen to be

magnetic attraction of Liquib oxyoen.
strong, even in relation to a solution of ferrous chlor ide, as set forth in the following table :

Professor Dewar then took a cup made of rock salt and put in it some liquid oxygen, for the liquid does not touch rock salt, but remains in it in a spheroidal state. The cup and its contents were placed between and a little below the poles of the magnet. Whenever the circuit was completed, the liquid oxygen rose from the cup and connected the two poles, as represented in the cut, which is copied from a photograph of the phenomenon. Then it boiled away, sometimes more on one pole than the other, and when the circuit was broken it fell off the pole in drops back into the cup. He also showed that the pole of the magne woutic property of liquid oxygen, he said, is about 1,000 as compared with $1,000,000$, the magnetic power of iron. The cooling of a body, he added, increased its magnetie power. Thus, cotton wool, cooled by liquid oxygen, was strongly attracted by the magnet, and a gen, was
orystal of ferrons sulphate, similarly cooled, stuck to orystal of ferrons sulphate, siet.
The lecturer remarked that fluorine is so much like oxygen in its properties that he ventured to predict that it will turn out to be a magnetic gas.
Common air, he stated, liquefies at a much lower temperature than does oxygen, and one would expect the orygen to come down before the nitrogen, as stated in some text books, but unfortunately it is not true. They liquefy together. In evaporating, however, the nitrogen boils off before the oxygen. Here he poured two or three ounces of liquid air into a large tent tube, and a smouldering splinter of wood dipped into the mouth of the tube was not re-lgnited; the bulk of the nitrogen was nearly five minutes in boiling off, after which a smonldering splinter dipped into the mouth of the teat tube burst into flame.
Professor Dewar then poured out a wineglassful of liquefled common air, and presented it to the chairiquefled common air, and presented alass only by the lower portion of the stem.
Between the poles of the magnet, all the liquefled air went to the poles; there was no separation of the oxy went to the poies; there was no separation of the oxy-
lating power as liquid oxygen. The lecturer remarked that the phenomena presented by liqueffed gases present an unlimited field for investigation by many workars. At such low temperatures they seemed to be drawing near what might be called "the death of matter:" iquid oxygen, for instance, had no action upon a piece of phosphorus dropped into it; and once he thought and publicly stated, that at such temperatures all chemical action ceased. That statement he now with drew, for he had found that a photographic plate standing in liquid oxygen could be aeted upon by energy ing in liquid oxygen could be acted upon by energy coming from outside, and
C. was sensitive to light.
His friend, Mr. McKendriek, had tried the effect of these low temperatures upon the spores of microbe organisms, by submitting putrefied blood, milk, and such like substances for one hour to a temperature of $-189^{\circ} \mathrm{C}$. ; they afterward went on putrefying. Seeds, also, withstood the action of a similar amount of cold. He thought, therefore, that the experiments had proved that the idea of Lord Kelvin uttered some years ago was possibly true, when he suggented that the first life might have been brought to the newly cooled earth upon a seed-bearing meteorite. He lastly drew attention to the following estimates by different scientific men as to the cold of stellar space: The temperature of space, Herschel, -150°; Hopkins, $-38^{\circ} 5^{\circ}$;
tur ture of space,
Fourier, -50°; Porschel, $-149^{\circ} ;$ Hopkins, $-38{ }^{\circ}{ }^{\circ}$;
Pictet, $-974^{\circ} ;$ Rankine, nothing.

Care and Management of Tools.

The following points on the management of a ma chine shop, which are extracted from an article in the Tradesman, will prove of value to those interested in this subject.
For much of the boring done in a machine shop, the upright drill, with the antomatic feed, can be ueed to very great advantage; it has been found much more convenient than a boring lathe, and fully as effleient. A machine of this class should not be used for ordinary rough drilling; this may be performed upon a lighter and cheaper machine. For light drilling, a small, quick-running drill preas, with hand feed, is suitable. By the use of universal chucks, and drills of uniform By the use of universal chucks, and drins of uniform
diameter throughout, including the shanks, the necessity of having a set of drills for each drill press is voided.
Every machine shop should be provided with a tool room, but this does not necessarily imply that all of the tools should be kept there or returned each time after being used; this, in many cases, incurs a great loss of time. This rule should be obeerved in the case of large, valuable tools which are seldom used, but it does not apply in the case of small drills, cold chisels, wrenches, etc.; the tool room should, however, have duplicates of all tools used in the shop.
So far as possible, a regular system should be observed in the sizes of nuts, bolts and tap bolts, so that solid wrenches can be used upon them. Whenever tools require repairing, by dressing, tempering or otherwise, they should be returned to the tool room, and it should be the duty of the tool keeper to have such tools repaired and put in order without delay and returned to their places, so that there will always be a supply on hand. The old method, whish allows the workman to carry the tool to the blacksmith shop and there wait until it is put in order, involves an unwarrantable waste of time.
The tool keeper must necessarily be a first-class machinist and tool maker, capable of replacing any and every tool used in the shop, and this is true even where the tools are mainly purchased, as special tools are unavoidably required occasionally in every shop. Ordinarily, every workman is supposed to keep his own tools ground and in good condition for work, but it is undoubtedly more economical to have certain tools, such as twist drills, reamers, etc., kept in order by the tool maker.

Solning Hand siaws.
The following directions for joining band saws are given by the Deflance Machine Works: Bevel each and of the saw the length of two teeth. Make a good joint. Fasten the saw in brazing clamps with the back against the shoulder, and wet the joints with solder water, or with a creamy mixture made by rubbing a lump of borax in about a teaspoonful of water on a slate. Put in the joint a piece of silvar solder the full size thereof, and clamp with tongs heated to a light red (not white) heat As soon as the solder fuses, blacken the tongs with water, and take them off. Remove the saw, hammer it, if neceskary, and fle down o an even thiekness, flnishing by draw-fling lengthwiea.

Coal is mined in Turkey, in Heraclea and Koalu, both on the Black Sea and about 100 miles from Constantinople. The mines at Heraclea are controlled by the Ottoman government : the Koslu mines by a private frm, Kurtschi \& Ca. The coal obtained is inferior in quality to the English mineral, especially to the in quality to the English
Cardiff and Newcastle coal.

WRCENTL PATEMTED DKVEMTIONE. Sugineerting.
Fewd Water Heater-Joeph Bell, Troutiale, Oregon. A cosing is, acoonditg to this in-
vention, cosoctiod as tis lower part with the stemm sopply, end containe upwardiy oxtecalios plates pro
 steem anpply to caooe the steam to pae upward be In mated and previoas to us entrasos to the bolier. The invention lo an improvement
Coar Screser.-James J. Coyne, Old

 jett frome the fized hirbe, brashee and bladee conneeting

Rallway Appltances.

Cars Coupluse.-Robert \& Russell, coupling jaw having a sorisontal hook at the forward end ase a ollonider on the lowor fhee of the moar end, wite the coupling Jer and abooldo. The tmprovement
atordo an antomatic conpler denigced to be wry chapp asd elmplo, alwaye mafte, and which may be coapped Can Whref, -George H. Graham, Oak

 Whiet tis a rabber cylinder throaph which paewes the bole of the hob, forming a mbber ceahion on the inner no redrece to a manaiman the of

Mechaniteal.

Wirn Moron-John Hoffman and Harvey I. Tursen, Oakloy, Eanees. This motor is of
 enourel vorical shast cossected with a turn-table ou aratoblo inelooing the hower, the frame baving a ring

Orl Cax.- Frank I. Small, Sing Sing, N. Y. This can lines a torible botiom and an upper and a ppring sormaily hoidiag the valve opas, while a apon has snobitructud comananiostion with the lower chamwayo tf may dien tor made mo ejpet aill with a gmatit deal devinsle in olling oworbesi mechanisu or parta difiteal) Gutrive Glass Phatra-William J Wiliom, Wotford, Kaxdeed. Pholographie plates then divided imte ervalikr plates of varrowse standerd proper pooilloo io the entiving toole, the catting then catter, prodiced either by the mavement of the cattor Cax Cbncpisa Machise-James a Pvek, Brownter, N. Y. Simple asd durablo in constraco escuroly crimp the samgee of the covver on to can
bodies. If heo a verticully rotating carrier with an laternititest motion and having peripheral moceses to at oppoofte ende of the carriop to nllige with the recemem. and aech having a boveled rifs engacine the can cover, potery motloo wo the oun, sud the ocher dio beling longirone at oppowte nidee of the carrier engage the lisogen of ties ospose orposto the lavolod rimy of the diew,
Rod Joist on, OOVPLIXE,-Isaac Sosec, Du Lancey, Ph. A simple and darable deviee ondilg appined a rrili rode, is proviled by thit lavention.
 hey allilisg tie one of tbe moceson and eagegiag with it projectiog ced the reesis in the otlor member, while the sides of the liey, and a bolt hoold foud ane fiver memberer hen n bead arsagned in the peith of twe loy to lock it in

Agriealimeal.

GBayn DrisL-William H. Davis, Fond da lac, Wiac Thit ievention provides ae in

frost or Auke froves and the rear or wheol trame ane
plvotally jofnted, the wheols in the roar frame rumsimat

Miseellaneeus
Casi Registeruye Macuiviba, - G. B. Meover, docsosed (Saraih it. Maeney and stanley A. Bryan, adminicrations,
ing attachment is provided hy this invention for a
formeris patented investen of the mame inventer, the formery patented investion of the same inventor, the
improvement addily fraclosal pares of a dollar only, improvement aldidig fractosal parts of a doliar only, chise. The rock ahaft of the printigg mechanions hasa
toothed wector engnaging a pinioe on the shaft of the numbler whovieb, apriag pawl carried by the platov engeging a sotebed wheol on the mumber wheel simft, a
volute spriag carrying the notched wheel beck after it volute spriag carrying the notched wheel beck after th
nis bees. moved by the pawl, while a spar wheel on the anmber wheel ahaft carries a ratchet whoel to be engaged ay tom are and, and numbering wheels with carrying mech. inn number wheed thatif.
Foldine Child's Carriagr.-William Cook, Now York City. The folding ruaning pear frame of this carriage has alde bars carrying stad axles on on springe in the arual manner. The sides and eade of ane body have pivotal conneetions between all thair the ranning gear frame, as well as a pivotally coonected bandie bas, will swing in anisos and the carriage may
be folded withoat diveconaectiaz any of the consections. The constraction is sache that thay of thability of of tho carr-
 On the fastealige of latclice by the eervant or attendant, sollapoing can le readily eftected by a allight proware tom boand thee been ritieed. When ereet the carriage io tom boand hes been rained. When orect the carriage io ag onen, belag mis.
Furniture Caster.-Rob Roy Parrish, Portised, Oregon. Tuis is as improvomeot io caster
 mont of the castens, while their removal may be effectei OJ the appication of more or loss forces. The metea
cocket has an internal int, sed the pintio has an ceiarged
 to the platlo having downwarily-projecting armas mormally cot of consect with the eocket, and the phate not
coming tato contact with the rib when thrown into an inclined position.
ASH SIFTER. - Johann G. Bast Brooklyn, N. Y. A devies more especially desiznel for
family tese is provided by this ievention-one which to anple and dirabie is construction, cesily masoipalated recoptapele with a ecrene bottom atts in the apper part of he pail, the flange reeting and trraing on the elfe of anged ild loeked by a bolt, while a coverine strip provided for co
Firiplace Blowsr-Gutie H of the froplace pespoctrough a captical rodod at the the side, and an sproe or coritin of freproof material in mepred at at and toe upper end to the haside of the cap, eseen on the sides
of the apron aliding oe the rode. A hendied bar on the bwer end of the apron sieco sildee on the role, and masy druwing the aprue into the cap. The blowee led dexigne Lo be readily raised or lowered to fecreene or diminithi the dragght, while being very orsasaental in appear-
ance sed sultabio for nos as sereen in sumaner time. Portable Bati.-Alfred H. Cox and Pose N. Haley, Now York Chly. This io a simple, com o form into a manll peckegef for corriages, and aftords vesas to admiditeter a shower or other batio of warm or cold water in a room without injory to carpote or furniIndsa draile plpe, there being riagine for ralaing and owering to fub, and a water-proof ecrven wall being lower edme. A clann water atpply dhvice having o of the acreen wall,
Rope Rerel-Hermann O. Kunath sraoville, Ind. This is an inespeneive deviee which may be made of wate ploces or stripe of wood, and Whecher, to which, a shors distance from thelr ende, ane Ing the handle. The fmprovereneat afforide a atrong form of conatraction, tho reel not being liable to be broken
and Hp from changee in the weathen
Stand for Sideboards, Etc.-Ferdiand K. Maximilles, Now York City. This is designed 8 new article of manafaciuro, compriwing a mirro Porma ie to sarve as a staned or support for glevess on hat any form of lecquered backing piate masy be aeed, and the cost of manufactare thas lessened.
CHECEREIN WORERR AND Hook. Otiver Kennely, Brunswiek, Ga. This is otimpledevioe ordinary eheck reis, to enable the driver to cheek or
 In whict sece rollien werviag se gaidee for the operating
reis, while en the role end of tio plete is of heoper hav-
\log a pawl adapted to engece a cateh riveted to the
reeli.. When the hores is to bo unchecked, the pawl it rais. Whan the checes releaed by pulling bockward on
and then alowiy releasige the rein, quickiy looening and then alowiy releasing the reine, quickiy looeening the rele after polliag beek causing the
the catch and hold the horse checked.
Roll Papier Holdirr and CutterEdivin E. Sensnas, Pilladelphia, Pa This is a device rolle, the holder beeng wo constracted that the loves end of the paper will be always readily accowible, and the
 perts, the reil is readily plineed is the holdor and the analon levice the roll may be more or lese tiethuly held to tarn mare or lese freely.
Box-Frank H. Palmer, Brooklyn, X. X. A single plece of apring wire, secured at one end
 belng thas formed for bolding shoe biscking, greave. and similiar subatances, oo that the user can quickily reSash Rat Fastener-Lorenzo M. Bronoon, Richmond Hill, N. Y. Thls ievention pro vindow sashes, desigred to operate aatomatically to lock the asabee and draw them together when the window is closed. Two regitatering caseas are secared to the meeting raile, and a weighted tumbler having teeth
pivoted in the apper mash is adapted to protrade into the lower sash, while spring-presped erms pivotod in the
lower cese aro adapted to engage the eoth of th
Wixdow Shade Fixture-George Biehn, Tacoma, Washington, This iaveation providee a sididng plate with an arm and hesd connected there-
with to form a slidiog bracket, with other novel feemara, a ciampand bracket being arranged on each aide any ordinary leagth. The device is ample and inezpenaive, may be secured to a window frame of any kind withoat the uee of screws or nalile, and casily adjuated to bold a shade at any dealred beight,
aimoet instanuly pat up or taken down.
Zrther.-Vetal Bessier, Brooklyn, N Y. The frot board of this instrument is hollowed out front edge of the eoundigg boerd, so that the hollowedoat portion axtends transvernely over and cloar of the velopment of the sonads. A metallice frame it sle moured to the counding board, its two parallel ende conning the pitct aod toulng ple platos, and the sidem
axtending over the board and atiached at their ende the frame onds. The fingor rest is made adjostable lengthwies of the instroment, to allow it to be eet more or less to the right hasd to accommodate differcent sized hands of chilidree or adalis, while allowing there eseily
Brace for Puano Kex Botroms. Terman Mecleilian, Toronto, Cosods. Thia brace has fines and heving on its inver face a longitodinal rib, horisontal member integrel with the spper edge of the ertical member extending over the rib, which is dapted for engazement with the under fees of the key bottom, the horizontal momber engaging with its upper Ight piano many be constructed of wood and the botiom preserved in perfect form, being effectually provented from waping, while the brace io light in weight,
trong, ruickiy applied, mad doee not interfere wilh the Ventilator for Hats-Martin F. W. Kochner, Brooklyn, X, Y. A fuce plate and back Whate are applied on the inside sud outside of an openopeniogs is bold to revolve letween the plates, or be edjuatiably held in any detied poeition. The device is apeciaily applicabie to the side, more or lese air boing admitued to the interior of the hat crown ace desired, or
Stipplive Implement.-John B. Pab and Jobn B. G. Gandelen, New York City. Thit ie a light and cooveniont implement
frame corrying a pivotiod improselon roller of thith a pa-
 lididigg tok anpplying foant, apringes pressing the fount cowart the impreseion soller, with the distribating rollers located internediately. The device is adapted Por the pr
stone or
dehed.

Ankle Support for Skatiss,-Lake W. Kenney, New York Oity. A U-shaped body be adapted to be eecarod to a flange of the heel plate of the
kate. the members of the body
extending apon escl do of the ankie, and pivoted yokes extendiap forward ond rearward from the upper ends of the membern aperom the yokes pasaing around the leg juet abov plied, and allows free motion in a heel and toe direc. non while preventing a lateral motion likely to dieloate or straiz the ankie.
Dresex for A Pix.-Julius A. Bidwell, Ivaspab, Cal. This design consitst of a circular Agure apparenty emboseed apos a sumicircular igigure, one appearing to eapport the other, there being a doliar sign on ithe other figare.
Drsians for a Bader.-Charles A. Mall, Marion, Ind. Twe delen pateets for badgen vierve and reverse sides, a dove reata on a floral spray roldees rad, the dove and the goliden rod sormoanump arblon-like pasiel decorsted with the U, \& coat of srms, whilie saspended from the panel is a diak repre-
menting on one side the landing of Columbus and on

orasch fo eroseching above a ribbon-lilke panel in wileb
is the U . \&. coas of arma, whille saspended beneati 18 a dibz showing on one aide the landing of Columbias, and on the other aide the Adminitration Bailiding of he Columblan Expowetion.
Nork-Coples of any of the above patents will be
furnitbed by Mubis \& Co, for $\$$ cents esch. Plesee furniabed by Muna a Ca, for $\$$ en ents esch. Please end name of
of thie paper.

HEW BOOKS AND PUBLICATIONS. Valye Gears fon Stiam Exaings, By Cecilile Peabody. New York:
John Wiley sons 1892, Pp. v,
128, with 38 additional folding plates. 128, with 38
Price $\$ 2.50$.
The plain silide valve, shirting eccentrics, link motons, radial valve gears, double valve rocers, sud drop ot-off vaive gears are the headings of the topics of his book, as oummarised is the contente. The subjects are ver, beting ased where desirable. The nameroass plates are of very material advantage, and the text closes with

Boyd's Copartinership and Resi-
DENCE BUSINESS Diriectory of Philadelphia City. Boyd's Dírectory Office, Philadelphia, Pa,
The basiaces interests of Philadol phis are admirably aprented in this volame. its wo main divissions are hy a directory of the same clansined by the natures of be basinesees. This is followed by reet directory, the whoie making a most creditable
apreentation of the business worid of our Penasylva-

How to Light a Colliery by ElicTricrix. By Sydney F F Walker. York: Macmillan \& Co 1802 Pp . 36. No index. Price 75 cents.

This is a roprust from the tranesctions of the British
Society of Mining stadents, and appears to be a very practical treatment of the subject of the lighting of coal

SCIENTIFIC AMERICAN

BUILDINa EDITION.

JULY NUMBER

table of contints.

Handitome plate in colore of a residence reently flocor plask, ote. Mosers. Rositiee ive Wright, archileck, New York, An esoelient deoigh. Heighte, Bleck
 Henry Lambert, arehivect, Bridgeport, Cona.
Perapective view and floor plans of a brick hoase at
Chambersburg Pa.s, recently desigred and bailt Chambersbarg Fa
cottage near Orange, X. J., from phans prepaiel by Munis \& Co, architecta, New York, Coel
g7,000 complete. Perspective view and foor ${ }_{\text {plane }}^{\$ 7}$
85,555 complete. Moar plans and perspectiv elevation.
residence at Beneonharat, Long Ieland, Cont
ge,800 complete. Mears. Parbit Bros. archil tects, Brooklym, N. Y. Two perspective eleve tions and foor planes.
Perspective elevations and interior views of the Americas Yacht Cinb Honee, at Milton Point newr Tye, N. Y. A hasdeome beildige of the Queen
Anne style. Meerr. I. A. sargent \& Co., archi. tects, New York.

 archite
plans.
A cottage at Babylon, Long Island, N. Y., erected at a coat of $\$ 3,7$
tive elevation.
$\$ 13 m$ of $\$ 1,500$. A siman bush home. Cont from for a summer honse.
Miecellaneoses contents: Electrical cotton gin.-
Aluminam. - The efllorescence on brickwork.Leaf photography.-Car mollag,-Superior steel and gray. - Tik for wrting on alan woed yeliow - An improved wood-workivg machine, illas. illartrated.- Elievators in the amphithester of
Rome.-Au Rome.-Au improved hot water beater, Mas-
trated.-Nataral wood arille end sereen workik illastrated.-Gaivanized eaves troughe and conThe scientidic American Arehitecte and Builders sdition is issued monthly. se se a yest, Slicie copies
B cente. Forty large quarto pares, equal to about - S oents. Forty large quarto panes, equal to aboel
 wth Ane engravinge, Minatrating the mote intereating exmples of Modern Architectural Constrvetion and allied enbjects.
The Fullines, Riehnase, Clieapnes, and Conveniesce of any architectural pabiliation fin the world. Sold by all mewalisiers.

MUNe a Co, Punimezas.

23usiness ant \$ersonal.
 Yor asch is mutben: about elpht weoris to a lines. Advice

Griodstone Yrames-Wilh cabinet huw and all fiw Devis. Rocheter, N. Y.
shingling gauge potent for mie. see parges Acme angine, 1 to 5 H. P. see atv, next leviee "U. S." setal polish, Indianapolis, Samples free Proses x Dies. Ferracute Mact. Co., Ançikek, i.
 Stean Hammars, Improved Hydrailie Jacks, and Tube
Expanders. R. Dedgeon, al Colembie 8L, New York. Screw machines, millins machines, and drill prowees The Garrin Ma Contrifugul Pumps for paper and polp milise imeating
 sureet, New York.
Wire clotheepin for sele, or Btate rishts sranted. Patented in C .8 . and Canain. Proctically teated. Rend
cents for sample. J. A. Johnson, Trempealoas, Wia.
 tridtyis "My Munn \& CO, publichers, nil hroudway, X. Y

S. I. What do you want to loy? We will send mithont cost
 way, New York.

 reatiliation, artesian apd driven wells, traiaw
conveging machinery, mill suad fectory plants.
Winted-At the new tinplate works in Philidelphia,
tinmen and wabliea who afe frot-clas workmen and tinmen and wabimea who ark irst-cilass workmet and way, through paro palm oll, and the making of the fineat

sF Send for Dew and complete cutalosue of Belentite

HINTS TO CORRESPONDENTS.
Names and Address mast sceompany, all letters,
or no antention will
oinforme palid theroto. This io for our
References to former articies or answers should

expecied without remunoration.
Selentise A mertean supplemonte reforred
to maty be had at he oflle. Price 10 cents each.
minerats ont for examination sbould be distincti)
marked or iabeled.
(4448) W. J. H. says: Please inform me If Dere is any way to prevent a boller from priming,
Woald you advise ueing potatoes for remoring ecale.
 horse power tabuiar boiler, eat emall and dropped in
in the seasia drum? I woold lilke to have your tdea In the tesars drum? I woold like to have your idea The priming of a boiler many arives from ineruated tabee alliy from overtaxing its eapactity. Although potatoen we mid no hisve bees ased for removing seale in hoileres we have too litile falth in their ellicieney to recommend fre the boiler. The to mette on the ire shent and infollor cleaner is the ordinary sal acdo and choopes rabbing wola. Ono half peund to a belter harse power, iateolved in the feed water and pamped into the boller, Whire, aturer a day's bolling in the regalar nie of the Howing town three eocks at a timene, whille the boiler io maniag. Hepeat and clean oat the bolles.
${ }^{(447)}$ H. M. T. asks: 1. If cocaine tellil the eervee at that place? body fregaently, would on paschology woald you recommend tor the work Oulline of Peychoomenen and can sapply Solly', ton Musell's "P Pryeloiogy," price price by mall pout pand.
(444) T. H. saye: 1. There is
aning out of a preapitoss hill ise fres from At Alisa $16 / \mathrm{inch}$ pipe. There is anziety to know what the bee in a perpendereloped it it were brought to Aleo tow mact peas wouldal be the powerer if brought an plis from perpendicular sections, that is a horisonAiso what hose power at as grade syop Han ham. mer with a sharp serew thread to the eje for roceiving dienililing evaer been kuown or is it now original? is auture, how cas it bet remid that the odilitation of volan puilify
isf A. We cannot rate the power of a ipring withoat
knowing the quantity of water flowing la gallons or cabie feet per minate, er the lengit of the pipe and the vertieal beiehts of the spring above the poins of discharge, which most bo open to the full apacity of the bipe. A dirrect hise of plpe down the alope of the hill ili give the greateast efliciney over the other line, , crow eye. Dietillation parifes water by morati miveral and organic matver from the dietiliate. Olors, if aot eliminated by opea boiling, may be abeorbed by tralloa
(4449 H. B., Munich.-In regard to your
 aval authorites are thoroughly posted as to all the nown improvements la naval armamoath coliu for atcence and defense. All the stoel alloys have ber parposes. The Manne beeo made practicabie for the great-gan tubes.
(4400) D. E. S., Eaton, O., nays: Early In the spring of this year water works were pat in en wellis drilled 100 feet deop in a nandy toom near creok. The wells aro cased up with Iron pipe. Up to mointh ago the water secmed as fine for drinking purpoest as any I ever anw, being ollybtly soft. For the retting worse. When diawn out of the hyirrant it arongly resembles milk in appearance, A glase full will liear in about two misutes, leaviog no modiment. By Wolding the glase to the ear a singing noise similar to hat prodaced by soda water is heard, and quite a vapor ar steana will riea, By holding a lightited match in thia apor tbe flame will brighton up porceptibly. The
rater amolle and tastes like oll. Is the water healily or how can we teat it (some simple way) to find what is he matter with ite: After the water setiles an oilly aubtance can be seces on the surface, Wonith the wator in our welis be as bealthy or more so than the hydrant atert Popalacion asol closely buil, no aswere, hand rove? The county isitrmary is located a half mile up the creek from the wolls, wich tis sower emptying into the creek. Would that contamisate the wellap A. The tadicatione are that you have gas or oll at a lower depth Han the weine, and hart the pamping has drawn the gae olin hoto the water nratum. The siagiag neise is proohly the gas eacaping from the water. The wator may is healthy, bat the taste and smell condemn it. The wage from the conoty inifrmary will not contaminate the wells, as the siltration of the croek water throngh ho soil will purify the water. We shoold judge the well water better than the hydrant water, provided that He welis are at a distance from water clowets and cese
pools. It is very donbtful if your deep woll water im proves. Probably s new ent of wells nearer the ereel and not so deep, say so feef, and at galite a distanco apart, will give you better tervice. The altuate from the creek is better than the present sapply.

TO INVENTORS.

more than one hundred thousand applicatione top of tente at home and abroed, onable us to underntand the awi and practioe on both continents, and to pomeess unsymopats of the patent laws of the United Btates and all forciem countries many be had on applicention, and persons contemplating the securing of patents, elther at homeo Which are low, tin secortance with the times and our ex tensive facilities for conducting the bosinems. Addre
 way, New York.

INDEX OF INVENTIONS For which Letters Patent of the United states were Granted

June 28, 1892.
AND EACH BEARING THAT BATE.

Meme	
	Ra
	,
Helme	
	souts

 Kineman

索

42wave

2intutunize
Hity
zewixutwe
そ\# = wiviz
Havenwarm

designs.

ane intay wive
man
\#2tivem

- $\cos ^{2}$
trade marks.

N

nnow

 Finimativit

 motykmene
 yont Tow

 Inproved Scrow Cut

 BABE BALL, - DEACRIPTION OF

 POWER HAMMER.
 Jent

NEW YORK TRADE SCHOOLS -DE

Serow-Cutting Foot Lathe
 Ditheo on tral latioen ouc

DEPEW CITY, Nie or x, Inver

 Steel Type for Writing Machines,

ELECTRO MOTOR SIMPLLE HOW TO

ROCK DRIILSC (4. AIR COMPRESSORS \&

SPECIAL NOTICEI

A Grax Aliratising Indilim
The Arohitecte and Builders Edition
of the Seientifle Amerioan. (CBtablitibed iesa)
This superb architectural work has by far the largeat dreculation of any periocical of the clase. It goes as-
 Ingineorrs, Contrictork, and House Owners.
 menufactaners sud dealers in Builiting Materiins, Car
 Arohtitetural Wood a and Metal Work, Buildors' Hard ware, Doors, Ssath, Bilinds, Peinta, and in fect all goodi
which enter tito or are waed in the sonatruction anit mach enter of Builimings or works of any kind.
The ratee for sudvertistins are moderate. For term
 \longrightarrow The Crandoll Pabunc co

2nd ECSE MACHINERY T
INVENTORS' IDEAS zat flo mation

USE QRINDSTONES?

 Naik

"ECONOMY IS WEALTH."

TO BUSINESS MEN

 to many timee ercoter than that of any stimilar Journal
now publishee. It goes lato all the states ana Territorios and is reed tis all the pritioctivel librarles and reading

 the advertising meat infiemon you to subettute some other paper for the sciverinio Askivass, when seyour fintereet to advertise. This is fropuently done for the reeson that the geent pets a larger cocmatatoon frow the Betrempinic Ambizicas. For ratee see top of trat coluemn of
aress MUNN \& CO., Publishers.

361 Broadway, New Yerk.

THE PREMIER CAMERA

Is the best in market. Simple of Manipulation.

Plates or Films are used.
The Shutter is alwaye set. PRICE \$18.00.
Photography. We Make all kinds of cameras. ROCHESTER OPTICAL COMPANY,

Fhe Belknap Little Giant Water Motor

 BELKNAP MOTOR CO., BELKNAP MOTOR CO.,
23 Plam St., Portland, Maine U.s. A. SMALL ELECTRIC MOTOR FOR AM-

HAVE YOU READ Experimental Science?

 Office of the SCIENTIFIC AMERICAN,
set BROADWAY. NEW YORK.

Nunded by Mathw Clares, tre	
HENRY CAREY	
810 Waiant EL., Philadelphla. $\mathrm{P}_{\text {anov }}$ V. S. A. rour new and Revised Catalorne of Practioul ane 	
anee applied to tie art of the world who will furnish hit to	

${ }^{\circ}{ }^{\prime \prime}$ELECTRICITY num

Sone Applcations or ELECTRIO
为

TOOL AGENTS WANTED NEMERE WR
NOW READY!
A NEW AND VALJABLE BOOK.

 Hom to mate Huble
 fleiditereprocthen indeoceribed in serid chear and exFor hacauers there are 1 ns revelpts: Weotro. Me-

 qu on the em sublecelude every thing worth knowtre ireen the head of (Cloansing over sem rocipes

or employ wioner, in wertiting of th tho topendent buainees

MUNN \& OO., Publishers, botimtifio ambionit offiog.

ELECTRIC VENTILATING FANS,
FOR MINING AND UNDERGROUND WORK.
ELLEOTRIOAL MINING APPARATUS OF EVERY DESORIPTION send por hllustuated catalogek m 2 .
THOMSON-VAN DEPOELE ELEOTRIC MINING COMPANY, 620 atlantic avenue, boston, mass.

OIL WELL SUPPLY CO. OATES ROCK \& ORE BREARER

MaLLEABLER

STEEL TYPE FOR TYPEWRITERS

OIEARE'E

 BRYINGAND YETTLATNGEANS, CEO. P. Winder Lo

GRAINING.-Wallo "Practioal Gmining" contaln

Perfect Newspaper File

 THE MILITARY ENGINEER AND

PELTON WATER WHEEL

 Hix Hituwitu mix , Mivi inow wonk

OSS MNGING
 ELECTRICITY

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES

 COPPER ZIMO ERAES TIM
 THE HARRINGTON KiNG PERFOHATING CO., Chicage,

CHUCKS. Nocmins.

DYNAMO CASTIWES, - Cmmpata fois

ON THE SPACE PROTECTED BY

THE WESTERM UMVERSITY,

 W.

A CONNEOTICUT PRACH ORCHARD

PROPOSALS.
Wofion to anchiticts.

 can be obtainod trom the amenvivai goms a Wote tavantara

CENTRIFUGAL FORCE AND RR

 MAFOCANT TEAK FOR FACHTS, SPANISH CEDAR THE E. D. ALBRO CO,

 mine, Cineinnath, 0.

HOW TO MAKE A STORAGE BAT-

 Wella, Oill nd Gee wolle, drille

Wrhinee for 100 co wow fatic

3rdoertisements．

显

 PATENT PETROLEUM MOTOR．
 and or intmititu bo
J．M．9ROB

KODAKS．

 Regular Folding OrdinaryI4 syles and sizee S6．00 to $\mathbf{s e 5 . 0 0}$ ．

Latest improvements，registers for ax－ posures ；glass plate attachments ；daylight ading，etc．，etc．Sond for catalogyr． THE EASTMAN COMPANY，

Dot ons．
CITMII
 sur
 95 MILK ST，BOSTON，MASS
This Cobepary owne the Letuer Patent crinated to Aloxadder Grsham－Bell，March
 1877，No．168，787．
The tranimitalion of spoech by all knowa forces of Ilifectic Spakkiog Tolephonee it－ friagee the right secured to this Company by the above pateuth，apd sooders ench iadivideal ueer of selephoines not furrish－ unlawfal ose，aad all the consequencese thereof，and liable to mait therefor．
＂Old things
have passed away．＂
The new quich－winding Wa－ terbury watch requiresabout five seconds to wind．It is cased in coin－silver，and gold filled，cases．

Stem－set，and jeweled movement，make it a perfect timepiece．Far better than any cheap Swiss watch． It is still a low－priced watch，but never＂given away．＇

THE SMTH PREMIER TTPEWRITER

THE ARMSTRONE MACHIMES，

TANITE Emar）Wheets． Emer Whetstenes．
 Kelle furleders．
The Tanite Co．， Sthoudesuna，Pa Whaниметон Sto，NEw YonK． HW．JOHIS nsetios STEAM PACKING
Boller Coverlingt，Mumbord，Roofing．
Balding Folt，Liquid Patits，

エモコ

ESTABLINHED 1846. The Most Popular Solentific Paper in the World

This widdely elvewisted and eplendility Mlustrated paper is publiched weokiy．Mrery pambar contatins six－ oridinal enyravinge of new inventtom and discoveriow． repreeentios Moptheortis Worts，Bteas Mechipery． Sew Inventions，Novelties in Mechanles，Maneftocures， teetures Agrioalture，Horticultures，Nataral History． ett．Complet list of pitents ecilh woek． Terme of Rebserlptien．－One copy of the Bcres－ pootice prepald，to any muberiber in tha Uuited Btatens Cancite or Mexioo，oo recolpt of three dellers by the
 Clatibs．Wpecte for partioniers． The maftot way to remitt is by Potal Onten Dinift ar Express Money Order．Money carofality pleoed inatoe

 TEBE
Scintific Simericati Supplement Thio tis e mporate end alitinct pabilioation frome Tis
 every number comptatity sixtien lapps peree full of en－ envinge，many of which are takion from fonden papers
 If，and theludes a wary wide ravge of contenta．It pre－ the priectipel departments of beleace and the Ureetal Arts，embractink Bloloky，Geology，Minineloes，Natumal History，Geocraphy，Archeolorg，Astronomy Cbemin－
 Marine Muyineeriby．Photorraphy，Techwoloes，Mens－ Ioturing Induatrica，sanitary Engetnceringe，Agricaiture Horticulture，Domestic Esonomy，Blograplay，Medlelae．
te．A vatt amount of freenh and valunble finformatlem obtalasble to no other pubilication．
 and Manafueturee at boune and abived are wiatrote Price for the supplmisirt tor the Duited statem and
 hacear and one copy of the Suppliwnevz，Hoth mavie． ruemit by pootal order，ecgrow money order，or aheck，
MUN \＆CE．o 361 Broudway，New Yerk，

Eुtildimg Cdititu．

 adorned with ellegnt platee mo of Aver，and with oftier flite eagravinga；illustrating the moot interesting oxamplee
 if a varicety of the lateet and beet phane for privato remi－
 peetpeotive and in color are siven，topecher with fili Plens，spectionslons，sheeta of Detalls，Brtimates，ete． The olecenco and olioapanem of thic mastifiont wort ave woi for it the Larkest Circalation of any dealers．pesoa yoar．Realt to

MUNF © CO．Publiahers，

